Elastic wedge with normal and shear surface tractions
Suppose
The tractions on the boundary vary as
r
n
{\displaystyle r^{n}}
.
No body forces.
Then
(1)
φ
=
r
n
+
2
f
(
θ
)
{\displaystyle {\text{(1)}}\qquad \varphi =r^{n+2}f(\theta )}
To find
f
(
θ
)
{\displaystyle f(\theta )}
plug into
∇
4
φ
=
0
{\displaystyle \nabla ^{4}{\varphi }=0}
.
(2)
(
d
2
d
θ
2
+
(
n
+
2
)
2
)
(
d
2
d
θ
2
+
n
2
)
f
(
θ
)
=
0
{\displaystyle {\text{(2)}}\qquad \left({\frac {d^{2}}{d\theta ^{2}}}+(n+2)^{2}\right)\left({\frac {d^{2}}{d\theta ^{2}}}+n^{2}\right)f(\theta )=0}
If
n
≠
0
{\displaystyle n\neq 0}
and
n
≠
−
2
{\displaystyle n\neq -2}
,
(3)
φ
=
r
n
+
2
[
a
1
cos
{
(
n
+
2
)
θ
}
+
a
2
cos
(
n
θ
)
+
a
3
sin
{
(
n
+
2
)
θ
}
+
a
4
sin
(
n
θ
)
]
{\displaystyle {\text{(3)}}\qquad \varphi =r^{n+2}\left[a_{1}\cos\{(n+2)\theta \}+a_{2}\cos(n\theta )+a_{3}\sin\{(n+2)\theta \}+a_{4}\sin(n\theta )\right]}
The corresponding stresses and displacements can be found from
Michell's solution. We have to take special care for the case where
n
=
0
{\displaystyle n=0}
, i.e., the traction on the surface is constant.
Ref: M.L. Williams, ASME J. Appl. Mech., v. 19 (1952), 526-528.
The Williams' solution
Stress concentration at the notch.
Singularity at the sharp corner, i.e,
σ
i
j
→
∞
{\displaystyle \sigma _{ij}\rightarrow \infty }
.
William's solution involves defining the origin at the corner and expanding the stress field as an asymptotic series in powers of r.
If the stresses (and strains) vary with
r
α
{\displaystyle r^{\alpha }}
as we approach the point
r
=
0
{\displaystyle r=0}
, the strain energy is given by
(4)
U
=
1
2
∫
0
2
π
∫
0
r
σ
i
j
ε
i
j
r
d
r
d
θ
=
C
∫
0
r
r
2
a
+
1
d
r
{\displaystyle {\text{(4)}}\qquad U={\frac {1}{2}}\int _{0}^{2\pi }\int _{0}^{r}\sigma _{ij}\varepsilon _{ij}~r~dr~d\theta =C\int _{0}^{r}r^{2a+1}dr}
This integral is bounded only if
a
>
−
1
{\displaystyle a>-1}
. Hence, singular stress fields are acceptable only if the exponent on the stress components exceeds
−
1
{\displaystyle -1}
.
Use a separated-variable series as in equation (3).
Each of the terms satisfies the traction-free BCs on the surface of the notch.
Relax the requirement that
n
{\displaystyle n}
in equation (3) is an integer. Let
n
=
λ
−
1
{\displaystyle n=\lambda -1}
.
(5)
φ
=
r
λ
+
1
[
a
1
cos
{
(
λ
+
1
)
θ
}
+
a
2
cos
(
λ
−
1
)
θ
+
a
3
sin
{
(
λ
+
1
)
θ
}
+
a
4
sin
(
λ
−
1
)
θ
]
{\displaystyle {\begin{aligned}{\text{(5)}}\qquad \varphi =r^{\lambda +1}\left[\right.&a_{1}\cos\{(\lambda +1)\theta \}+a_{2}\cos {(\lambda -1)\theta }+\\&a_{3}\sin\{(\lambda +1)\theta \}+a_{4}\sin {(\lambda -1)\theta }\left.\right]\end{aligned}}}
The stresses are
σ
r
r
=
r
λ
−
1
[
−
a
1
λ
(
λ
+
1
)
cos
{
(
λ
+
1
)
θ
}
−
a
2
λ
(
λ
−
3
)
cos
{
(
λ
−
1
)
θ
}
−
a
3
λ
(
λ
+
1
)
sin
{
(
λ
+
1
)
θ
}
−
a
4
λ
(
λ
−
3
)
sin
{
(
λ
−
1
)
θ
}
]
(6)
σ
r
θ
=
r
λ
−
1
[
+
a
1
λ
(
λ
+
1
)
sin
{
(
λ
+
1
)
θ
}
+
a
2
λ
(
λ
−
1
)
sin
{
(
λ
−
1
)
θ
}
−
a
3
λ
(
λ
+
1
)
cos
{
(
λ
+
1
)
θ
}
−
a
4
λ
(
λ
−
1
)
cos
{
(
λ
−
1
)
θ
}
]
(7)
σ
θ
θ
=
r
λ
−
1
[
+
a
1
λ
(
λ
+
1
)
cos
{
(
λ
+
1
)
θ
}
+
a
2
λ
(
λ
+
1
)
cos
{
(
λ
−
1
)
θ
}
+
a
3
λ
(
λ
+
1
)
sin
{
(
λ
+
1
)
θ
}
+
a
4
λ
(
λ
+
1
)
sin
{
(
λ
−
1
)
θ
}
]
(8)
{\displaystyle {\begin{aligned}\sigma _{rr}=r^{\lambda -1}\left[\right.&-a_{1}\lambda (\lambda +1)\cos\{(\lambda +1)\theta \}-a_{2}\lambda (\lambda -3)\cos\{(\lambda -1)\theta \}\\&-a_{3}\lambda (\lambda +1)\sin\{(\lambda +1)\theta \}-a_{4}\lambda (\lambda -3)\sin\{(\lambda -1)\theta \}\left.\right]{\text{(6)}}\qquad \\\sigma _{r\theta }=r^{\lambda -1}\left[\right.&+a_{1}\lambda (\lambda +1)\sin\{(\lambda +1)\theta \}+a_{2}\lambda (\lambda -1)\sin\{(\lambda -1)\theta \}\\&-a_{3}\lambda (\lambda +1)\cos\{(\lambda +1)\theta \}-a_{4}\lambda (\lambda -1)\cos\{(\lambda -1)\theta \}\left.\right]{\text{(7)}}\qquad \\\sigma _{\theta \theta }=r^{\lambda -1}\left[\right.&+a_{1}\lambda (\lambda +1)\cos\{(\lambda +1)\theta \}+a_{2}\lambda (\lambda +1)\cos\{(\lambda -1)\theta \}\\&+a_{3}\lambda (\lambda +1)\sin\{(\lambda +1)\theta \}+a_{4}\lambda (\lambda +1)\sin\{(\lambda -1)\theta \}\left.\right]{\text{(8)}}\qquad \end{aligned}}}
The BCs are
σ
r
θ
=
σ
θ
θ
=
0
{\displaystyle \sigma _{r\theta }=\sigma _{\theta \theta }=0}
at
θ
=
α
{\displaystyle \theta =\alpha }
.Hence,
0
=
r
λ
−
1
λ
[
+
a
1
(
λ
+
1
)
sin
{
(
λ
+
1
)
α
}
+
a
2
(
λ
−
1
)
sin
{
(
λ
−
1
)
α
}
−
a
3
(
λ
+
1
)
cos
{
(
λ
+
1
)
α
}
−
a
4
(
λ
−
1
)
cos
{
(
λ
−
1
)
α
}
]
(9)
0
=
r
λ
−
1
λ
[
−
a
1
(
λ
+
1
)
sin
{
(
λ
+
1
)
α
}
−
a
2
(
λ
−
1
)
sin
{
(
λ
−
1
)
α
}
−
a
3
(
λ
+
1
)
cos
{
(
λ
+
1
)
α
}
−
a
4
(
λ
−
1
)
cos
{
(
λ
−
1
)
α
}
]
(10)
{\displaystyle {\begin{aligned}0=r^{\lambda -1}\lambda \left[\right.&+a_{1}(\lambda +1)\sin\{(\lambda +1)\alpha \}+a_{2}(\lambda -1)\sin\{(\lambda -1)\alpha \}\\&-a_{3}(\lambda +1)\cos\{(\lambda +1)\alpha \}-a_{4}(\lambda -1)\cos\{(\lambda -1)\alpha \}\left.\right]{\text{(9)}}\qquad \\0=r^{\lambda -1}\lambda \left[\right.&-a_{1}(\lambda +1)\sin\{(\lambda +1)\alpha \}-a_{2}(\lambda -1)\sin\{(\lambda -1)\alpha \}\\&-a_{3}(\lambda +1)\cos\{(\lambda +1)\alpha \}-a_{4}(\lambda -1)\cos\{(\lambda -1)\alpha \}\left.\right]{\text{(10)}}\qquad \end{aligned}}}
The BCs are
σ
r
θ
=
σ
θ
θ
=
0
{\displaystyle \sigma _{r\theta }=\sigma _{\theta \theta }=0}
at
θ
=
−
α
{\displaystyle \theta =-\alpha }
.Hence,
0
=
r
λ
−
1
λ
[
+
a
1
(
λ
+
1
)
cos
{
(
λ
+
1
)
α
}
+
a
2
(
λ
+
1
)
cos
{
(
λ
−
1
)
α
}
+
a
3
(
λ
+
1
)
sin
{
(
λ
+
1
)
α
}
+
a
4
(
λ
+
1
)
sin
{
(
λ
−
1
)
α
}
]
(11)
0
=
r
λ
−
1
λ
[
+
a
1
(
λ
+
1
)
cos
{
(
λ
+
1
)
α
}
+
a
2
(
λ
+
1
)
cos
{
(
λ
−
1
)
α
}
−
a
3
(
λ
+
1
)
sin
{
(
λ
+
1
)
α
}
−
a
4
(
λ
+
1
)
sin
{
(
λ
−
1
)
α
}
]
(12)
{\displaystyle {\begin{aligned}0=r^{\lambda -1}\lambda \left[\right.&+a_{1}(\lambda +1)\cos\{(\lambda +1)\alpha \}+a_{2}(\lambda +1)\cos\{(\lambda -1)\alpha \}\\&+a_{3}(\lambda +1)\sin\{(\lambda +1)\alpha \}+a_{4}(\lambda +1)\sin\{(\lambda -1)\alpha \}\left.\right]{\text{(11)}}\qquad \\0=r^{\lambda -1}\lambda \left[\right.&+a_{1}(\lambda +1)\cos\{(\lambda +1)\alpha \}+a_{2}(\lambda +1)\cos\{(\lambda -1)\alpha \}\\&-a_{3}(\lambda +1)\sin\{(\lambda +1)\alpha \}-a_{4}(\lambda +1)\sin\{(\lambda -1)\alpha \}\left.\right]{\text{(12)}}\qquad \end{aligned}}}
The above equations will have non-trivial solutions only for certain
eigenvalues of
λ
{\displaystyle \lambda }
, one of which is
λ
=
0
{\displaystyle \lambda =0}
. Using the symmetries of the equations, we can partition the coefficient matrix.
Adding equations (9) and (10),
(13)
a
3
(
λ
+
1
)
cos
{
(
λ
+
1
)
α
}
+
a
4
(
λ
−
1
)
cos
{
(
λ
−
1
)
α
}
=
0
{\displaystyle {\text{(13)}}\qquad a_{3}(\lambda +1)\cos\{(\lambda +1)\alpha \}+a_{4}(\lambda -1)\cos\{(\lambda -1)\alpha \}=0}
Subtracting equation (10) from (9),
(14)
a
1
(
λ
+
1
)
sin
{
(
λ
+
1
)
α
}
+
a
2
(
λ
−
1
)
sin
{
(
λ
−
1
)
α
}
=
0
{\displaystyle {\text{(14)}}\qquad a_{1}(\lambda +1)\sin\{(\lambda +1)\alpha \}+a_{2}(\lambda -1)\sin\{(\lambda -1)\alpha \}=0}
Adding equations (11) and (12),
(15)
a
1
(
λ
+
1
)
cos
{
(
λ
+
1
)
α
}
+
a
2
(
λ
+
1
)
cos
{
(
λ
−
1
)
α
}
=
0
{\displaystyle {\text{(15)}}\qquad a_{1}(\lambda +1)\cos\{(\lambda +1)\alpha \}+a_{2}(\lambda +1)\cos\{(\lambda -1)\alpha \}=0}
Subtracting equation (12) from (11),
(16)
a
3
(
λ
+
1
)
sin
{
(
λ
+
1
)
α
}
+
a
4
(
λ
+
1
)
sin
{
(
λ
−
1
)
α
}
=
0
{\displaystyle {\text{(16)}}\qquad a_{3}(\lambda +1)\sin\{(\lambda +1)\alpha \}+a_{4}(\lambda +1)\sin\{(\lambda -1)\alpha \}=0}
Therefore, the two independent sets of equations are
(17)
[
(
λ
+
1
)
sin
{
(
λ
+
1
)
α
}
(
λ
−
1
)
sin
{
(
λ
−
1
)
α
}
(
λ
+
1
)
cos
{
(
λ
+
1
)
α
}
(
λ
+
1
)
cos
{
(
λ
−
1
)
α
}
]
[
a
1
a
2
]
=
[
0
0
]
{\displaystyle {\text{(17)}}\qquad {\begin{bmatrix}(\lambda +1)\sin\{(\lambda +1)\alpha \}&(\lambda -1)\sin\{(\lambda -1)\alpha \}\\(\lambda +1)\cos\{(\lambda +1)\alpha \}&(\lambda +1)\cos\{(\lambda -1)\alpha \}\end{bmatrix}}{\begin{bmatrix}a_{1}\\a_{2}\end{bmatrix}}={\begin{bmatrix}0\\0\end{bmatrix}}}
and
(18)
[
(
λ
+
1
)
cos
{
(
λ
+
1
)
α
}
(
λ
−
1
)
cos
{
(
λ
−
1
)
α
}
(
λ
+
1
)
sin
{
(
λ
+
1
)
α
}
(
λ
+
1
)
sin
{
(
λ
−
1
)
α
}
]
[
a
3
a
4
]
=
[
0
0
]
{\displaystyle {\text{(18)}}\qquad {\begin{bmatrix}(\lambda +1)\cos\{(\lambda +1)\alpha \}&(\lambda -1)\cos\{(\lambda -1)\alpha \}\\(\lambda +1)\sin\{(\lambda +1)\alpha \}&(\lambda +1)\sin\{(\lambda -1)\alpha \}\end{bmatrix}}{\begin{bmatrix}a_{3}\\a_{4}\end{bmatrix}}={\begin{bmatrix}0\\0\end{bmatrix}}}
Equations (17) have a non-trivial solution only if
(19)
λ
sin
(
2
α
)
+
sin
(
2
λ
α
)
=
0
{\displaystyle {\text{(19)}}\qquad \lambda \sin(2\alpha )+\sin(2\lambda \alpha )=0}
Equations (18) have a non-trivial solution only if
(20)
λ
sin
(
2
α
)
−
sin
(
2
λ
α
)
=
0
{\displaystyle {\text{(20)}}\qquad \lambda \sin(2\alpha )-\sin(2\lambda \alpha )=0}
From equation (4), acceptable singular stress fields must have
λ
>
0
{\displaystyle \lambda >0}
.Hence,
λ
=
0
{\displaystyle \lambda =0}
is not acceptable.
The term with the smallest eigenvalue of
λ
{\displaystyle \lambda }
dominates the solution. Hence, this eigenvalue is what we seek.
λ
=
1
{\displaystyle \lambda =1}
leads to
φ
=
a
4
sin
(
0
)
{\displaystyle \varphi =a_{4}\sin(0)}
. Unacceptable.
We can find the eiegnvalues for general wedge angles using graphical methods.
In this case, the wedge becomes a crack.In this case,
(21)
λ
=
1
2
,
1
,
3
2
,
{\displaystyle {\text{(21)}}\qquad \lambda ={\frac {1}{2}},1,{\frac {3}{2}},}
The lowest eigenvalue is
1
/
2
{\displaystyle 1/2}
. If we use, this value in equation
(17), then the two equations will not be linearly independent and
we can express them as one equation with the substitutions
(22)
a
1
=
A
2
sin
(
α
2
)
;
a
2
=
−
3
A
2
sin
(
3
α
2
)
{\displaystyle {\text{(22)}}\qquad a_{1}={\frac {A}{2}}\sin \left({\frac {\alpha }{2}}\right)~;~~a_{2}=-{\frac {3A}{2}}\sin \left({\frac {3\alpha }{2}}\right)}
where
A
{\displaystyle A}
is a constant.
The singular stress field at the crack tip is then
σ
r
r
=
K
I
2
π
r
[
5
4
cos
(
θ
2
)
−
1
4
cos
(
3
θ
2
)
]
(23)
σ
θ
θ
=
K
I
2
π
r
[
3
4
cos
(
θ
2
)
+
1
4
cos
(
3
θ
2
)
]
(24)
σ
r
θ
=
K
I
2
π
r
[
1
4
sin
(
θ
2
)
+
1
4
sin
(
3
θ
2
)
]
(25)
{\displaystyle {\begin{aligned}\sigma _{rr}&={\frac {K_{I}}{\sqrt {2\pi r}}}\left[{\frac {5}{4}}\cos \left({\frac {\theta }{2}}\right)-{\frac {1}{4}}\cos \left({\frac {3\theta }{2}}\right)\right]{\text{(23)}}\qquad \\\sigma _{\theta \theta }&={\frac {K_{I}}{\sqrt {2\pi r}}}\left[{\frac {3}{4}}\cos \left({\frac {\theta }{2}}\right)+{\frac {1}{4}}\cos \left({\frac {3\theta }{2}}\right)\right]{\text{(24)}}\qquad \\\sigma _{r\theta }&={\frac {K_{I}}{\sqrt {2\pi r}}}\left[{\frac {1}{4}}\sin \left({\frac {\theta }{2}}\right)+{\frac {1}{4}}\sin \left({\frac {3\theta }{2}}\right)\right]{\text{(25)}}\qquad \end{aligned}}}
where,
K
I
{\displaystyle K_{I}}
is the { Mode I Stress Intensity Factor.}
(26)
K
I
=
3
A
π
2
{\displaystyle {\text{(26)}}\qquad K_{I}=3A{\sqrt {\frac {\pi }{2}}}}
If we use equations (18) we can get the stresses due to a mode
II loading.
σ
r
r
=
K
I
I
2
π
r
[
−
5
4
sin
(
θ
2
)
+
3
4
sin
(
3
θ
2
)
]
(27)
σ
θ
θ
=
K
I
I
2
π
r
[
−
3
4
sin
(
θ
2
)
−
3
4
sin
(
3
θ
2
)
]
(28)
σ
r
θ
=
K
I
I
2
π
r
[
1
4
cos
(
θ
2
)
+
3
4
cos
(
3
θ
2
)
]
(29)
{\displaystyle {\begin{aligned}\sigma _{rr}&={\frac {K_{II}}{\sqrt {2\pi r}}}\left[-{\frac {5}{4}}\sin \left({\frac {\theta }{2}}\right)+{\frac {3}{4}}\sin \left({\frac {3\theta }{2}}\right)\right]{\text{(27)}}\qquad \\\sigma _{\theta \theta }&={\frac {K_{II}}{\sqrt {2\pi r}}}\left[-{\frac {3}{4}}\sin \left({\frac {\theta }{2}}\right)-{\frac {3}{4}}\sin \left({\frac {3\theta }{2}}\right)\right]{\text{(28)}}\qquad \\\sigma _{r\theta }&={\frac {K_{II}}{\sqrt {2\pi r}}}\left[{\frac {1}{4}}\cos \left({\frac {\theta }{2}}\right)+{\frac {3}{4}}\cos \left({\frac {3\theta }{2}}\right)\right]{\text{(29)}}\qquad \end{aligned}}}
Elastic wedge loaded by an axial force
The BCs at
θ
=
±
β
{\displaystyle \theta =\pm \beta }
are
(30)
t
r
=
t
θ
=
0
;
n
^
=
±
e
^
θ
⇒
σ
r
θ
=
σ
θ
θ
=
0
{\displaystyle {\text{(30)}}\qquad t_{r}=t_{\theta }=0~;~~{\widehat {\mathbf {n} }}{}=\pm {\widehat {\mathbf {e} }}{\theta }\Rightarrow \sigma _{r\theta }=\sigma _{\theta \theta }=0}
What is
n
^
{\displaystyle {\widehat {\mathbf {n} }}{}}
at the vertex ?
The traction is infinite since the force is applied on zero area. Consider equilibrium of a portion of the wedge.
At
r
=
a
{\displaystyle r=a}
, the BCs are
(31)
n
^
=
e
^
r
⇒
σ
r
θ
=
t
r
;
σ
θ
θ
=
t
θ
{\displaystyle {\text{(31)}}\qquad {\widehat {\mathbf {n} }}{}={\widehat {\mathbf {e} }}{r}\Rightarrow \sigma _{r\theta }=t_{r}~;~~\sigma _{\theta \theta }=t_{\theta }}
For equilibrium,
∑
F
1
=
∑
F
2
=
∑
M
3
=
0
{\displaystyle \sum F_{1}=\sum F_{2}=\sum M_{3}=0}
.
Therefore,
P
1
+
∫
−
β
β
[
σ
r
r
(
a
,
θ
)
cos
θ
−
σ
r
θ
(
a
,
θ
)
sin
θ
]
a
d
θ
=
0
(32)
∫
−
β
β
[
σ
r
r
(
a
,
θ
)
sin
θ
+
σ
r
θ
(
a
,
θ
)
cos
θ
]
a
d
θ
=
0
(33)
∫
−
β
β
[
a
σ
r
θ
(
a
,
θ
)
]
a
d
θ
=
0
(34)
{\displaystyle {\begin{aligned}P_{1}+\int _{-\beta }^{\beta }\left[\sigma _{rr}(a,\theta )\cos \theta -\sigma _{r\theta }(a,\theta )\sin \theta \right]a~d\theta =0{\text{(32)}}\qquad \\\int _{-\beta }^{\beta }\left[\sigma _{rr}(a,\theta )\sin \theta +\sigma _{r\theta }(a,\theta )\cos \theta \right]a~d\theta =0{\text{(33)}}\qquad \\\int _{-\beta }^{\beta }\left[a\sigma _{r\theta }(a,\theta )\right]a~d\theta =0{\text{(34)}}\qquad \end{aligned}}}
These constraint conditions are equivalent to the concentrated force BC.
Assume that
σ
r
θ
(
r
,
θ
)
=
0
{\displaystyle \sigma _{r\theta }(r,\theta )=0}
. This satisfies the traction
BCs on
θ
=
±
β
{\displaystyle \theta =\pm \beta }
and equation (34). Therefore,
(35)
σ
r
θ
=
∂
∂
r
(
1
r
∂
∂
φ
θ
)
=
0
⇒
φ
=
r
η
(
θ
)
+
ζ
(
r
)
{\displaystyle {\text{(35)}}\qquad \sigma _{r\theta }={\frac {\partial }{\partial }}{}{r}\left({\frac {1}{r}}{\frac {\partial }{\partial }}{\varphi }{\theta }\right)=0\Rightarrow \varphi =r\eta (\theta )+\zeta (r)}
Hence,
(36)
σ
θ
θ
=
∂
2
∂
φ
∂
r
=
ζ
″
(
r
)
{\displaystyle {\text{(36)}}\qquad \sigma _{\theta \theta }={\frac {\partial ^{2}}{\partial \varphi \partial r}}=\zeta ^{''}(r)}
That means
σ
θ
θ
{\displaystyle \sigma _{\theta \theta }}
is independent of
θ
{\displaystyle \theta }
. Therefore,
in order to satisfy the BCs,
σ
θ
θ
=
0
{\displaystyle \sigma _{\theta \theta }=0}
, i.e.,
(37)
ζ
(
r
)
=
C
1
r
+
C
2
⇒
φ
=
r
η
(
θ
)
+
C
1
r
=
r
[
η
(
θ
)
+
C
1
]
=
r
ξ
(
θ
)
{\displaystyle {\text{(37)}}\qquad \zeta (r)=C_{1}r+C_{2}\Rightarrow \varphi =r\eta (\theta )+C_{1}r=r[\eta (\theta )+C_{1}]=r\xi (\theta )}
Checking for compatibility,
∇
4
φ
=
0
{\displaystyle \nabla ^{4}{\varphi }=0}
, we get
(38)
ξ
(
I
V
)
(
θ
)
+
2
ξ
″
(
θ
)
+
ξ
(
θ
)
=
0
{\displaystyle {\text{(38)}}\qquad \xi ^{(IV)}(\theta )+2\xi ^{''}(\theta )+\xi (\theta )=0}
The general solution is
(39)
ξ
(
θ
)
=
A
sin
θ
+
B
cos
θ
+
C
θ
sin
θ
+
D
θ
cos
θ
{\displaystyle {\text{(39)}}\qquad \xi (\theta )=A\sin \theta +B\cos \theta +C\theta \sin \theta +D\theta \cos \theta }
Therefore,
(40)
φ
=
r
[
A
sin
θ
+
B
cos
θ
+
C
θ
sin
θ
+
D
θ
cos
θ
]
{\displaystyle {\text{(40)}}\qquad {\varphi =r\left[A\sin \theta +B\cos \theta +C\theta \sin \theta +D\theta \cos \theta \right]}}
The only non-zero stress is
σ
r
r
{\displaystyle \sigma _{rr}}
.
(41)
σ
r
r
=
1
r
[
2
C
cos
θ
−
2
D
sin
θ
]
{\displaystyle {\text{(41)}}\qquad \sigma _{rr}={\frac {1}{r}}\left[2C\cos \theta -2D\sin \theta \right]}
Plugging into equation (33), we get
(42)
−
D
[
2
β
−
sin
(
2
β
)
]
=
0
⇒
D
=
0
{\displaystyle {\text{(42)}}\qquad -D\left[2\beta -\sin(2\beta )\right]=0\Rightarrow D=0}
Hence,
(43)
σ
r
r
=
2
C
r
cos
θ
{\displaystyle {\text{(43)}}\qquad \sigma _{rr}={\frac {2C}{r}}\cos \theta }
Plugging into equation (32), we get
(44)
−
P
=
C
[
2
β
+
sin
(
2
β
)
]
⇒
C
=
−
P
2
β
+
sin
(
2
β
)
{\displaystyle {\text{(44)}}\qquad -P=C\left[2\beta +\sin(2\beta )\right]\Rightarrow C={\frac {-P}{2\beta +\sin(2\beta )}}}
Therefore,
(45)
φ
=
C
r
θ
sin
θ
=
−
P
r
θ
sin
θ
2
β
+
sin
(
2
β
)
{\displaystyle {\text{(45)}}\qquad {\varphi =Cr\theta \sin \theta ={\frac {-Pr\theta \sin \theta }{2\beta +\sin(2\beta )}}}}
The stress state is
(46)
σ
r
r
=
−
2
P
cos
θ
r
[
2
β
+
sin
(
2
β
)
]
;
σ
r
θ
=
0
;
σ
θ
θ
=
0
{\displaystyle {\text{(46)}}\qquad {\sigma _{rr}=-{\frac {2P\cos \theta }{r[2\beta +\sin(2\beta )]}}~;~~\sigma _{r\theta }=0~;~~\sigma _{\theta \theta }=0}}
A concentrated point load acting on a half plane.
(47)
σ
r
r
=
−
2
P
cos
θ
π
r
;
σ
r
θ
=
0
;
σ
θ
θ
=
0
{\displaystyle {\text{(47)}}\qquad {\sigma _{rr}=-{\frac {2P\cos \theta }{\pi r}}~;~~\sigma _{r\theta }=0~;~~\sigma _{\theta \theta }=0}}
2
μ
u
r
=
−
∂
∂
φ
r
+
α
r
∂
∂
ψ
θ
2
μ
u
θ
=
−
1
r
∂
∂
φ
θ
+
α
r
2
∂
∂
ψ
r
{\displaystyle {\begin{aligned}2\mu u_{r}&=-{\frac {\partial }{\partial }}{\varphi }{r}+\alpha r{\frac {\partial }{\partial }}{\psi }{\theta }\\2\mu u_{\theta }&=-{\frac {1}{r}}{\frac {\partial }{\partial }}{\varphi }{\theta }+\alpha r^{2}{\frac {\partial }{\partial }}{\psi }{r}\end{aligned}}}
where
∇
2
ψ
=
0
∂
∂
r
(
r
∂
∂
ψ
θ
)
=
∇
2
φ
{\displaystyle {\begin{aligned}\nabla ^{2}{\psi }=0\\{\frac {\partial }{\partial }}{}{r}\left(r{\frac {\partial }{\partial }}{\psi }{\theta }\right)=\nabla ^{2}{\varphi }\end{aligned}}}
Plug in
φ
=
C
r
θ
sin
θ
{\displaystyle \varphi =Cr\theta \sin \theta }
,
∂
∂
r
(
r
∂
∂
ψ
θ
)
=
∇
2
φ
⇒
∂
∂
r
(
r
∂
∂
ψ
θ
)
=
2
C
r
cos
θ
⇒
r
∂
∂
ψ
θ
=
2
C
ln
r
cos
θ
+
A
(
θ
)
⇒
∂
∂
ψ
θ
=
2
C
ln
r
r
cos
θ
+
A
(
θ
)
r
⇒
ψ
=
2
C
ln
r
r
sin
θ
+
η
(
θ
)
r
+
ξ
r
{\displaystyle {\begin{aligned}&{\frac {\partial }{\partial }}{}{r}\left(r{\frac {\partial }{\partial }}{\psi }{\theta }\right)=\nabla ^{2}{\varphi }\\\Rightarrow &{\frac {\partial }{\partial }}{}{r}\left(r{\frac {\partial }{\partial }}{\psi }{\theta }\right)={\frac {2C}{r}}\cos \theta \\\Rightarrow &r{\frac {\partial }{\partial }}{\psi }{\theta }=2C\ln r\cos \theta +A(\theta )\\\Rightarrow &{\frac {\partial }{\partial }}{\psi }{\theta }=2C{\frac {\ln r}{r}}\cos \theta +{\frac {A(\theta )}{r}}\\\Rightarrow &\psi =2C{\frac {\ln r}{r}}\sin \theta +{\frac {\eta (\theta )}{r}}+\xi {r}\end{aligned}}}
Plug
ψ
{\displaystyle \psi }
into
∇
2
ψ
=
0
{\displaystyle \nabla ^{2}{\psi }=0}
,
1
r
3
η
″
(
θ
)
+
1
r
3
η
(
θ
)
+
ξ
″
(
r
)
+
1
r
ξ
′
(
r
)
−
4
C
r
3
sin
θ
=
0
⇒
η
″
(
θ
)
+
η
(
θ
)
+
r
3
ξ
″
(
r
)
+
r
2
ξ
′
(
r
)
−
4
C
sin
θ
=
0
{\displaystyle {\begin{aligned}&{\frac {1}{r^{3}}}\eta ^{''}(\theta )+{\frac {1}{r^{3}}}\eta (\theta )+\xi ^{''}(r)+{\frac {1}{r}}\xi ^{'}(r)-{\frac {4C}{r^{3}}}\sin \theta =0\\\Rightarrow &\eta ^{''}(\theta )+\eta (\theta )+r^{3}\xi ^{''}(r)+r^{2}\xi ^{'}(r)-4C\sin \theta =0\end{aligned}}}
Hence,
η
″
(
θ
)
+
η
(
θ
)
−
4
C
sin
θ
=
b
r
3
ξ
″
(
r
)
+
r
2
ξ
′
(
r
)
=
−
b
r
3
{\displaystyle {\begin{aligned}\eta ^{''}(\theta )+\eta (\theta )-4C\sin \theta &=b\\r^{3}\xi ^{''}(r)+r^{2}\xi ^{'}(r)&=-{\frac {b}{r^{3}}}\end{aligned}}}
Solving,
η
(
θ
)
=
−
2
C
θ
cos
θ
+
d
cos
θ
+
e
sin
θ
+
b
ξ
′
(
r
)
=
f
r
+
b
r
2
{\displaystyle {\begin{aligned}\eta (\theta )&=-2C\theta \cos \theta +d\cos \theta +e\sin \theta +b\\\xi ^{'}(r)&={\frac {f}{r}}+{\frac {b}{r^{2}}}\end{aligned}}}
Therefore,
2
μ
u
r
=
2
α
C
ln
r
cos
θ
+
(
2
α
−
1
)
C
θ
sin
θ
+
α
(
e
−
2
C
)
cos
θ
−
α
d
sin
θ
2
μ
u
θ
=
−
2
α
C
ln
r
sin
θ
+
(
2
α
−
1
)
C
sin
θ
+
(
2
α
−
1
)
C
θ
cos
θ
−
α
d
cos
θ
−
α
e
sin
θ
+
α
f
r
{\displaystyle {\begin{aligned}2\mu u_{r}&=2\alpha C\ln r\cos \theta +(2\alpha -1)C\theta \sin \theta +\alpha (e-2C)\cos \theta -\alpha d\sin \theta \\2\mu u_{\theta }&=-2\alpha C\ln r\sin \theta +(2\alpha -1)C\sin \theta +(2\alpha -1)C\theta \cos \theta -\alpha d\cos \theta -\alpha e\sin \theta +\alpha fr\end{aligned}}}
To fix the rigid body motion, we set
u
θ
=
0
{\displaystyle u_{\theta }=0}
when
θ
=
0
{\displaystyle \theta =0}
,
and set
u
r
=
0
{\displaystyle u_{r}=0}
when
θ
=
0
{\displaystyle \theta =0}
and
r
=
L
{\displaystyle r=L}
.Then,
u
r
=
α
C
μ
ln
(
r
L
)
cos
θ
+
(
2
α
−
1
)
C
2
μ
θ
sin
θ
u
θ
=
−
α
C
μ
ln
(
r
L
)
sin
θ
+
(
2
α
−
1
)
C
2
μ
θ
cos
θ
−
C
2
μ
sin
θ
{\displaystyle {\begin{aligned}u_{r}&={\frac {\alpha C}{\mu }}\ln \left({\frac {r}{L}}\right)\cos \theta +{\frac {(2\alpha -1)C}{2\mu }}\theta \sin \theta \\u_{\theta }&=-{\frac {\alpha C}{\mu }}\ln \left({\frac {r}{L}}\right)\sin \theta +{\frac {(2\alpha -1)C}{2\mu }}\theta \cos \theta -{\frac {C}{2\mu }}\sin \theta \end{aligned}}}
The displacements are singular at
r
=
0
{\displaystyle r=0}
and
r
=
∞
{\displaystyle r=\infty }
.
At
θ
=
0
{\displaystyle \theta =0}
,
u
r
=
α
C
μ
ln
(
r
L
)
u
θ
=
0
{\displaystyle {\begin{aligned}u_{r}&={\frac {\alpha C}{\mu }}\ln \left({\frac {r}{L}}\right)\\u_{\theta }&=0\end{aligned}}}
Is the small strain assumption satisfied ?
Elastic wedge loaded by two forces at the tip
This problem is also self-similar (no inherent length scale).
All quantities can be expressed in the separated-variable form
σ
=
f
(
r
)
g
(
θ
)
{\displaystyle \sigma =f(r)g(\theta )}
.
The stresses vary as
(
1
/
r
)
{\displaystyle (1/r)}
(the area of action of the force decreases with increasing
r
{\displaystyle r}
). How about a conical wedge ?
From Michell's solution, pick terms containing
1
/
r
{\displaystyle 1/r}
in the stresses.
Then,
φ
=
C
1
r
θ
sin
θ
+
C
2
r
ln
r
cos
θ
+
C
3
r
θ
cos
θ
+
C
4
r
ln
r
sin
θ
{\displaystyle \varphi =C_{1}r\theta \sin \theta +C_{2}r\ln r\cos \theta +C_{3}r\theta \cos \theta +C_{4}r\ln r\sin \theta }
Therefore, from Tables,
σ
r
r
=
C
1
(
2
cos
θ
r
)
+
C
2
(
cos
θ
r
)
+
C
3
(
2
sin
θ
r
)
+
C
4
(
sin
θ
r
)
σ
r
θ
=
C
2
(
sin
θ
r
)
+
C
4
(
−
cos
θ
r
)
σ
θ
θ
=
C
2
(
cos
θ
r
)
+
C
4
(
sin
θ
r
)
{\displaystyle {\begin{aligned}\sigma _{rr}&=C_{1}\left({\frac {2\cos \theta }{r}}\right)+C_{2}\left({\frac {\cos \theta }{r}}\right)+C_{3}\left({\frac {2\sin \theta }{r}}\right)+C_{4}\left({\frac {\sin \theta }{r}}\right)\\\sigma _{r\theta }&=C_{2}\left({\frac {\sin \theta }{r}}\right)+C_{4}\left({\frac {-\cos \theta }{r}}\right)\\\sigma _{\theta \theta }&=C_{2}\left({\frac {\cos \theta }{r}}\right)+C_{4}\left({\frac {\sin \theta }{r}}\right)\end{aligned}}}
From traction BCs,
C
2
=
C
4
=
0
{\displaystyle C_{2}=C_{4}=0}
.
From equilibrium,
F
1
+
2
∫
α
β
(
C
1
cos
θ
−
C
3
sin
θ
a
)
a
cos
θ
d
θ
=
0
F
2
+
2
∫
α
β
(
C
1
cos
θ
−
C
3
sin
θ
a
)
a
sin
θ
d
θ
=
0
{\displaystyle {\begin{aligned}F_{1}+2\int _{\alpha }^{\beta }\left({\frac {C_{1}\cos \theta -C_{3}\sin \theta }{a}}\right)a\cos \theta d\theta &=0\\F_{2}+2\int _{\alpha }^{\beta }\left({\frac {C_{1}\cos \theta -C_{3}\sin \theta }{a}}\right)a\sin \theta d\theta &=0\end{aligned}}}
After algebra,
σ
r
r
=
2
C
1
cos
θ
r
+
2
C
3
sin
θ
r
;
σ
r
θ
=
0
;
σ
θ
θ
=
0
{\displaystyle \sigma _{rr}={\frac {2C_{1}\cos \theta }{r}}+{\frac {2C_{3}\sin \theta }{r}}~;~~\sigma _{r\theta }=0~;~~\sigma {\theta \theta }=0}
C
1
=
−
F
1
π
;
C
2
=
F
2
π
{\displaystyle C_{1}=-{\frac {F_{1}}{\pi }}~;~~C_{2}={\frac {F_{2}}{\pi }}}
The displacements are
u
1
=
−
F
1
(
κ
+
1
)
ln
|
x
1
|
4
π
μ
+
F
2
(
κ
+
1
)
sign
(
x
1
)
8
μ
u
2
=
−
F
2
(
κ
+
1
)
ln
|
x
1
|
4
π
μ
−
F
1
(
κ
+
1
)
sign
(
x
1
)
8
μ
{\displaystyle {\begin{aligned}u_{1}&=-{\frac {F_{1}(\kappa +1)\ln |x_{1}|}{4\pi \mu }}+{\frac {F_{2}(\kappa +1){\text{sign}}(x_{1})}{8\mu }}\\u_{2}&=-{\frac {F_{2}(\kappa +1)\ln |x_{1}|}{4\pi \mu }}-{\frac {F_{1}(\kappa +1){\text{sign}}(x_{1})}{8\mu }}\end{aligned}}}
where
κ
=
3
−
4
ν
plane strain
κ
=
3
−
ν
1
+
ν
plane stress
{\displaystyle {\begin{aligned}\kappa =3-4\nu &&{\text{plane strain}}\\\kappa ={\frac {3-\nu }{1+\nu }}&&{\text{plane stress}}\\\end{aligned}}}
and
sign
(
x
)
=
{
+
1
x
>
0
−
1
x
<
0
{\displaystyle {\text{sign}}(x)={\begin{cases}+1&x>0\\-1&x<0\end{cases}}}
Introduction to Elasticity