Natural Planck units as geometrical objects (the mathematical electron model)
In a geometrical Planck unit theory, the dimensioned universe at the Planck scale is defined by discrete geometrical objects for the Planck units; Planck mass , Planck length , Planck time and Planck charge. The object embeds the attribute (mass, length, time, charge) of the unit, whereas for numerical based constants, the numerical values are dimensionless frequencies of the SI unit (kg, m, s, A), 3kg refers to 3 of the unit kg, the number 3 carries no mass-specific information.
The mathematical electron [ 1] is a Planck unit model where mass
M
{\displaystyle M}
, length
L
{\displaystyle L}
, time
T
{\displaystyle T}
, and ampere
A
{\displaystyle A}
are each assigned discrete geometrical objects from the geometry of 2 dimensionless physical constants ; the (inverse) fine structure constant α and Omega Ω (note: Omega has an intriguing solution in terms of pi and e and so may be a mathematical, not physical, constant).
Embedded into each object is the object function (attribute).
Table 1. Geometrical units
Attribute
Geometrical object
mass
M
=
(
1
)
{\displaystyle M=(1)}
time
T
=
(
π
)
{\displaystyle T=(\pi )}
sqrt(momentum)
P
=
(
Ω
)
{\displaystyle P=(\Omega )}
velocity
V
=
(
2
π
Ω
2
)
{\displaystyle V=(2\pi \Omega ^{2})}
length
L
=
(
2
π
2
Ω
2
)
{\displaystyle L=(2\pi ^{2}\Omega ^{2})}
ampere
A
=
16
V
3
α
P
3
=
(
2
7
π
3
Ω
3
α
)
{\displaystyle A={\frac {16V^{3}}{\alpha P^{3}}}=({\frac {2^{7}\pi ^{3}\Omega ^{3}}{\alpha }})}
As the geometries of dimensionless constants, these objects are also dimensionless and so are independent of any system of units, and of any numerical system, and so could qualify as "natural units" (naturally occuring units);
...ihre Bedeutung für alle Zeiten und für alle, auch außerirdische und außermenschliche Kulturen notwendig behalten und welche daher als »natürliche Maßeinheiten« bezeichnet werden können...
...These necessarily retain their meaning for all times and for all civilizations, even extraterrestrial and non-human ones, and can therefore be designated as "natural units"... -Max Planck
[ 2] [ 3]
As geometrical objects, they may combine Lego-style to form more complex objects such as electrons (i.e.: by embedding mass and ampere objects into the geometry of the electron (the electron object), the electron can have wavelength and charge) [ 4] . This requires a mathematical (unit number) relationship that defines how the objects interact with each other.
Table 2. Unit number
Attribute
Object
Unit number θ
mass
M
=
(
1
)
{\displaystyle M=(1)}
15
{\displaystyle 15}
time
T
=
(
π
)
{\displaystyle T=(\pi )}
−
30
{\displaystyle -30}
sqrt(momentum)
P
=
(
Ω
)
{\displaystyle P=(\Omega )}
16
{\displaystyle 16}
velocity
V
=
(
2
π
Ω
2
)
{\displaystyle V=(2\pi \Omega ^{2})}
17
{\displaystyle 17}
length
L
=
(
2
π
2
Ω
2
)
{\displaystyle L=(2\pi ^{2}\Omega ^{2})}
−
13
{\displaystyle -13}
ampere
A
=
16
V
3
α
P
3
=
(
2
7
π
3
Ω
3
α
)
{\displaystyle A={\frac {16V^{3}}{\alpha P^{3}}}=({\frac {2^{7}\pi ^{3}\Omega ^{3}}{\alpha }})}
3
{\displaystyle 3}
As alpha (α = 137.035 999 084) and Omega (Ω = 2.007 134 949 636) both have numerical solutions, we can assign to MLTA numerical values, i.e.: V = 2πΩ2 = 25.3123819 and use to solve geometrical physical constant equivalents.
Table 3. Physical constant equivalents
CODATA 2014 [ 5]
SI unit
Geometrical constant
unit uθ
c = 299 792 458 (exact)
m
s
{\displaystyle {\frac {m}{s}}}
c* = V = 25.312381933
u
17
{\displaystyle u^{17}}
h = 6.626 070 040(81) e-34
k
g
m
2
s
{\displaystyle {\frac {kg\;m^{2}}{s}}}
h* =
2
π
M
V
L
{\displaystyle 2\pi MVL}
= 12647.2403
u
15
+
17
−
13
{\displaystyle u^{15+17-13}}
=
u
19
{\displaystyle u^{19}}
G = 6.674 08(31) e-11
m
3
k
g
s
2
{\displaystyle {\frac {m^{3}}{kg\;s^{2}}}}
G* =
V
2
L
M
{\displaystyle {\frac {V^{2}L}{M}}}
= 50950.55478
u
34
−
13
−
15
{\displaystyle u^{34-13-15}}
=
u
6
{\displaystyle u^{6}}
e = 1.602 176 620 8(98) e-19
C
=
A
s
{\displaystyle C=As}
e* =
A
T
{\displaystyle AT}
= 735.70635849
u
3
−
30
{\displaystyle u^{3-30}}
=
u
−
27
{\displaystyle u^{-27}}
kB = 1.380 648 52(79) e-23
k
g
m
2
s
2
K
{\displaystyle {\frac {kg\;m^{2}}{s^{2}\;K}}}
kB * =
2
π
V
M
A
{\displaystyle {\frac {2\pi VM}{A}}}
= 0.679138336
u
17
+
15
−
3
{\displaystyle u^{17+15-3}}
=
u
29
{\displaystyle u^{29}}
We then find that where the unit numbers cancel, the numerical solutions agree (see Table 8).
Table 4. Dimensionless combinations
CODATA 2014 (mean)
(α, Ω)
units uΘ = 1
k
B
e
c
h
=
{\displaystyle {\frac {k_{B}ec}{h}}=}
1.000 8254
(
k
B
∗
)
(
e
∗
)
(
c
∗
)
(
h
∗
)
{\displaystyle {\frac {(k_{B}^{*})(e^{*})(c^{*})}{(h^{*})}}}
= 1.0
(
u
29
)
(
u
−
27
)
(
u
17
)
(
u
19
)
=
1
{\displaystyle {\frac {(u^{29})(u^{-27})(u^{17})}{(u^{19})}}=1}
h
3
e
13
c
24
=
{\displaystyle {\frac {h^{3}}{e^{13}c^{24}}}=}
0.228 473 639... 10-58
(
h
∗
)
3
(
e
∗
)
13
(
c
∗
)
24
=
α
13
2
106
π
64
(
Ω
15
)
5
=
{\displaystyle {\frac {(h^{*})^{3}}{(e^{*})^{13}(c^{*})^{24}}}={\frac {\alpha ^{13}}{2^{106}\pi ^{64}(\color {red}\Omega ^{15})^{5}\color {black}}}=}
0.228 473 759... 10-58
(
u
19
)
3
(
u
−
27
)
13
(
u
17
)
24
=
1
{\displaystyle {\frac {(u^{19})^{3}}{(u^{-27})^{13}(u^{17})^{24}}}=1}
h
c
2
e
m
p
G
2
k
B
=
{\displaystyle {\frac {hc^{2}em_{p}}{G^{2}k_{B}}}=}
3.376 716
(
h
∗
)
(
c
∗
)
2
(
e
∗
)
M
(
G
∗
)
2
(
k
B
∗
)
=
2
11
π
3
α
2
=
{\displaystyle {\frac {(h^{*})(c^{*})^{2}(e^{*})M}{(G^{*})^{2}(k_{B}^{*})}}={\frac {2^{11}\pi ^{3}}{\alpha ^{2}}}=}
3.381 506
(
u
19
)
(
u
17
)
2
(
u
−
27
)
(
u
15
)
(
u
6
)
2
(
u
29
)
=
1
{\displaystyle {\frac {(u^{19})(u^{17})^{2}(u^{-27})(u^{15})}{(u^{6})^{2}(u^{29})}}=1}
To translate from geometrical objects to a numerical system of units requires system dependent scalars (kltpva ). For example;
If we use k to convert M to the SI Planck mass (M*k SI =
m
P
{\displaystyle m_{P}}
), then k SI = 0.2176728e-7kg (SI units )
Using v SI = 11843707.905m/s gives c = V*v SI = 299792458m/s (SI units )
Using vimp = 7359.3232155miles/s gives c = V*v imp = 186282miles/s (imperial units )
Table 5. Geometrical units
Attribute
Geometrical object
Scalar
Unit u θ
mass
M
=
(
1
)
{\displaystyle M=(1)}
k
u
15
{\displaystyle u^{15}}
time
T
=
(
π
)
{\displaystyle T=(\pi )}
t
u
−
30
{\displaystyle u^{-30}}
sqrt(momentum)
P
=
(
Ω
)
{\displaystyle P=(\Omega )}
r 2
u
16
{\displaystyle u^{16}}
velocity
V
=
(
2
π
Ω
2
)
{\displaystyle V=(2\pi \Omega ^{2})}
v
u
17
{\displaystyle u^{17}}
length
L
=
(
2
π
2
Ω
2
)
{\displaystyle L=(2\pi ^{2}\Omega ^{2})}
l
u
−
13
{\displaystyle u^{-13}}
ampere
A
=
(
2
7
π
3
Ω
3
α
)
{\displaystyle A=({\frac {2^{7}\pi ^{3}\Omega ^{3}}{\alpha }})}
a
u
3
{\displaystyle u^{3}}
Because the scalars also include the SI unit, v = 11843707.905m/s ... they follow the unit number relationship u θ . This means that we can find ratios where the scalars cancel. Here are examples (units = 1), as such only 2 scalars are required , for example, if we know the numerical value for a and for l then we know the numerical value for t (t = a3 l3 ), and from l and t we know the value for k .
u
3
∗
3
u
−
13
∗
3
u
−
30
(
a
3
l
3
t
)
=
u
−
13
∗
15
u
15
∗
9
u
−
30
∗
11
(
l
15
k
9
t
11
)
=
.
.
.
=
1
{\displaystyle {\frac {u^{3*3}u^{-13*3}}{u^{-30}}}\;({\frac {a^{3}l^{3}}{t}})={\frac {u^{-13*15}}{u^{15*9}u^{-30*11}}}\;({\frac {l^{15}}{k^{9}t^{11}}})=\;...\;=1}
This means that once any 2 scalars have been assigned values, the other scalars are then defined by default, consequently the CODATA 2014 values are used here as only 2 constants (c, μ0 ) are assigned exact values, following the 2019 redefinition of SI base units 4 constants have been independently assigned exact values which is problematic in terms of this model.
Scalars r (θ = 8) and v (θ = 17) are chosen as they can be derived directly from the 2 constants with exact values; c and μ0 .
v
=
c
2
π
Ω
2
=
11843707.905...
,
u
n
i
t
s
=
m
s
{\displaystyle v={\frac {c}{2\pi \Omega ^{2}}}=11843707.905...,\;units={\frac {m}{s}}}
r
7
=
2
11
π
5
Ω
4
μ
0
α
;
r
=
0.712562514304...
,
u
n
i
t
s
=
(
k
g
.
m
s
)
1
/
4
{\displaystyle r^{7}={\frac {2^{11}\pi ^{5}\Omega ^{4}\mu _{0}}{\alpha }};\;r=0.712562514304...,\;units=({\frac {kg.m}{s}})^{1/4}}
Table 6. Geometrical objects
attribute
geometrical object
unit number θ
scalar r(8), v(17)
mass
M
=
(
1
)
{\displaystyle M=(1)}
15 = 8*4-17
k
=
r
4
v
{\displaystyle k={\frac {r^{4}}{v}}}
time
T
=
(
π
)
{\displaystyle T=(\pi )}
-30 = 8*9-17*6
t
=
r
9
v
6
{\displaystyle t={\frac {r^{9}}{v^{6}}}}
velocity
V
=
(
2
π
Ω
2
)
{\displaystyle V=(2\pi \Omega ^{2})}
17
v
length
L
=
(
2
π
2
Ω
2
)
{\displaystyle L=(2\pi ^{2}\Omega ^{2})}
-13 = 8*9-17*5
l
=
r
9
v
5
{\displaystyle l={\frac {r^{9}}{v^{5}}}}
ampere
A
=
(
2
7
π
3
Ω
3
α
)
{\displaystyle A=({\frac {2^{7}\pi ^{3}\Omega ^{3}}{\alpha }})}
3 = 17*3-8*6
a
=
v
3
r
6
{\displaystyle a={\frac {v^{3}}{r^{6}}}}
Table 7. Comparison; SI and θ
constant
θ (SI unit)
MLTVA
scalar r(8), v(17)
c
m
s
{\displaystyle {\frac {m}{s}}}
(-13+30 = 17 )
c* =
V
∗
v
{\displaystyle V*v}
17
h
k
g
m
2
s
{\displaystyle {\frac {kg\;m^{2}}{s}}}
(15-26+30=19 )
h* =
2
π
M
V
L
∗
r
13
v
5
{\displaystyle 2\pi MVL*{\frac {r^{13}}{v^{5}}}}
8*13-17*5=19
G
m
3
k
g
s
2
{\displaystyle {\frac {m^{3}}{kg\;s^{2}}}}
(-39-15+60=6 )
G* =
V
2
L
M
∗
r
5
v
2
{\displaystyle {\frac {V^{2}L}{M}}*{\frac {r^{5}}{v^{2}}}}
8*5-17*2=6
e
C
=
A
s
{\displaystyle C=As}
(3-30=-27 )
e* =
A
T
∗
r
3
v
3
{\displaystyle AT*{\frac {r^{3}}{v^{3}}}}
8*3-17*3=-27
kB
k
g
m
2
s
2
K
{\displaystyle {\frac {kg\;m^{2}}{s^{2}\;K}}}
(15-26+60-20=29 )
kB * =
2
π
V
M
A
∗
r
10
v
3
{\displaystyle {\frac {2\pi VM}{A}}*{\frac {r^{10}}{v^{3}}}}
8*10-17*3=29
μ0
k
g
m
s
2
A
2
{\displaystyle {\frac {kg\;m}{s^{2}\;A^{2}}}}
(15-13+60-6=56 )
μ0 * =
4
π
V
2
M
α
L
A
2
∗
r
7
{\displaystyle {\frac {4\pi V^{2}M}{\alpha LA^{2}}}*r^{7}}
8*7=56
The fine structure constant can be derived from this formula (units and scalars cancel).
2
(
h
∗
)
(
μ
0
∗
)
(
e
∗
)
2
(
c
∗
)
=
2
(
2
3
π
4
Ω
4
)
/
(
α
2
11
π
5
Ω
4
)
(
2
7
π
4
Ω
3
α
)
2
(
2
π
Ω
2
)
=
α
{\displaystyle {\frac {2(h^{*})}{(\mu _{0}^{*})(e^{*})^{2}(c^{*})}}=2({2^{3}\pi ^{4}\Omega ^{4}})/({\frac {\alpha }{2^{11}\pi ^{5}\Omega ^{4}}})({\frac {2^{7}\pi ^{4}\Omega ^{3}}{\alpha }})^{2}(2\pi \Omega ^{2})=\color {red}\alpha \color {black}}
u
n
i
t
s
u
19
u
56
(
u
−
27
)
2
u
17
=
1
{\displaystyle units\;{\frac {u^{19}}{u^{56}(u^{-27})^{2}u^{17}}}=1}
s
c
a
l
a
r
s
(
r
13
v
5
)
(
1
r
7
)
(
v
6
r
6
)
(
1
v
)
=
1
{\displaystyle scalars\;({\frac {r^{13}}{v^{5}}})({\frac {1}{r^{7}}})({\frac {v^{6}}{r^{6}}})({\frac {1}{v}})=1}
The electron object (formula fe ) is a mathematical particle (units and scalars cancel).
f
e
=
4
π
2
(
2
6
3
π
2
α
Ω
5
)
3
=
.23895453
.
.
.
x
10
23
{\displaystyle f_{e}=4\pi ^{2}(2^{6}3\pi ^{2}\alpha \Omega ^{5})^{3}=.23895453...x10^{23}}
units = 1
In this example, embedded within the electron are the objects for charge, length and time ALT. AL as an ampere-meter (ampere-length) are the units for a magnetic monopole .
T
=
π
r
9
v
6
,
u
−
30
{\displaystyle T=\pi {\frac {r^{9}}{v^{6}}},\;u^{-30}}
σ
e
=
3
α
2
A
L
2
π
2
=
2
7
3
π
3
α
Ω
5
r
3
v
2
,
u
−
10
{\displaystyle \sigma _{e}={\frac {3\alpha ^{2}AL}{2\pi ^{2}}}={2^{7}3\pi ^{3}\alpha \Omega ^{5}}{\frac {r^{3}}{v^{2}}},\;u^{-10}}
f
e
=
σ
e
3
2
T
=
(
2
7
3
π
3
α
Ω
5
)
3
2
π
,
u
n
i
t
s
=
(
u
−
10
)
3
u
−
30
=
1
,
s
c
a
l
a
r
s
=
(
r
3
v
2
)
3
v
6
r
9
=
1
{\displaystyle f_{e}={\frac {\sigma _{e}^{3}}{2T}}={\frac {(2^{7}3\pi ^{3}\alpha \Omega ^{5})^{3}}{2\pi }},\;units={\frac {(u^{-10})^{3}}{u^{-30}}}=1,scalars=({\frac {r^{3}}{v^{2}}})^{3}{\frac {v^{6}}{r^{9}}}=1}
Associated with the electron are dimensioned parameters, these parameters however are a function of the MLTA units, the formula fe dictating the frequency of these units. By setting MLTA to their SI Planck unit equivalents (Table 6.);
electron mass
m
e
∗
=
M
f
e
{\displaystyle m_{e}^{*}={\frac {M}{f_{e}}}}
(M = Planck mass =
r
4
v
)
{\displaystyle {\frac {r^{4}}{v}})}
= 0.910 938 232 11 e-30
electron wavelength
λ
e
∗
=
2
π
L
f
e
{\displaystyle \lambda _{e}^{*}=2\pi Lf_{e}}
(L = Planck length =
2
π
Ω
2
r
9
v
5
)
{\displaystyle 2\pi \Omega ^{2}{\frac {r^{9}}{v^{5}}})}
= 0.242 631 023 86 e-11
elementary charge
e
∗
=
A
T
{\displaystyle e^{*}=A\;T}
(T = Planck time ) =
2
7
π
4
Ω
3
α
r
3
v
3
{\displaystyle {\frac {2^{7}\pi ^{4}\Omega ^{3}}{\alpha }}{\frac {r^{3}}{v^{3}}}}
= 0.160 217 651 30 e-18
Rydberg constant
R
∗
=
(
m
e
4
π
L
α
2
M
)
=
1
2
23
3
3
π
11
α
5
Ω
17
v
5
r
9
u
13
{\displaystyle R^{*}=({\frac {m_{e}}{4\pi L\alpha ^{2}M}})={\frac {1}{2^{23}3^{3}\pi ^{11}\alpha ^{5}\Omega ^{17}}}{\frac {v^{5}}{r^{9}}}\;u^{13}}
= 10 973 731.568 508
The most precise of the experimentally measured constants is the Rydberg constant R = 10973731.568508(65) 1/m. Here c (exact), Vacuum permeability μ0 = 4π/10^7 (exact) and R (12-13 digits) are combined into a unit-less ratio;
μ
0
∗
=
4
π
V
2
M
α
L
A
2
=
α
2
11
π
5
Ω
4
r
7
,
u
56
{\displaystyle \mu _{0}^{*}={\frac {4\pi V^{2}M}{\alpha LA^{2}}}={\frac {\alpha }{2^{11}\pi ^{5}\Omega ^{4}}}r^{7},\;u^{56}}
R
∗
=
(
m
e
4
π
L
α
2
M
)
=
1
2
23
3
3
π
11
α
5
Ω
17
v
5
r
9
,
u
13
{\displaystyle R^{*}=({\frac {m_{e}}{4\pi L\alpha ^{2}M}})={\frac {1}{2^{23}3^{3}\pi ^{11}\alpha ^{5}\Omega ^{17}}}{\frac {v^{5}}{r^{9}}},\;u^{13}}
(
c
∗
)
35
(
μ
0
∗
)
9
(
R
∗
)
7
=
(
2
π
Ω
2
)
35
/
(
α
2
11
π
5
Ω
4
)
9
.
(
1
2
23
3
3
π
11
α
5
Ω
17
)
7
,
u
n
i
t
s
=
(
u
17
)
35
(
u
56
)
9
(
u
13
)
7
{\displaystyle {\frac {(c^{*})^{35}}{(\mu _{0}^{*})^{9}(R^{*})^{7}}}=(2\pi \Omega ^{2})^{35}/({\frac {\alpha }{2^{11}\pi ^{5}\Omega ^{4}}})^{9}.({\frac {1}{2^{23}3^{3}\pi ^{11}\alpha ^{5}\Omega ^{17}}})^{7},\;units={\frac {(u^{17})^{35}}{(u^{56})^{9}(u^{13})^{7}}}}
(
c
∗
)
35
(
μ
0
∗
)
9
(
R
∗
)
7
=
2
295
π
157
3
21
α
26
(
Ω
15
)
15
{\displaystyle {\frac {(c^{*})^{35}}{(\mu _{0}^{*})^{9}(R^{*})^{7}}}=2^{295}\pi ^{157}3^{21}\alpha ^{26}(\Omega ^{15})^{15}}
, units = 1
We can now define Ω using the geometries for (c* , μ0 * , R* ) and then solve by replacing (c* , μ0 * , R* ) with the numerical (c, μ0 , R ).
Ω
225
=
(
c
∗
)
35
2
295
3
21
π
157
(
μ
0
∗
)
9
(
R
∗
)
7
α
26
,
u
n
i
t
s
=
1
{\displaystyle \Omega ^{225}={\frac {(c^{*})^{35}}{2^{295}3^{21}\pi ^{157}(\mu _{0}^{*})^{9}(R^{*})^{7}\alpha ^{26}}},\;units=1}
Ω
=
2.007
134
949
636...
,
u
n
i
t
s
=
1
{\displaystyle \Omega =2.007\;134\;949\;636...,\;units=1}
(CODATA 2014 mean values)
Ω
=
2.007
134
949
687...
,
u
n
i
t
s
=
1
{\displaystyle \Omega =2.007\;134\;949\;687...,\;units=1}
(CODATA 2018 mean values)
Ω
=
2.007
134
949
584...
,
u
n
i
t
s
=
1
{\displaystyle \Omega =2.007\;134\;949\;584...,\;units=1}
(CODATA 2022 mean values)
There is a close natural number for Ω that is a square root
Ω
=
(
π
e
e
(
1
−
e
)
)
=
2.007
134
9543...
{\displaystyle \Omega ={\sqrt {\left(\pi ^{e}e^{(1-e)}\right)}}=2.007\;134\;9543...}
implying that Ω can have a plus or a minus solution, and this agrees with theory (in the mass domain Ω occurs as Ω2 = plus only, in the charge domain Ω occurs as Ω3 = can be plus or minus; see sqrt(momentum) ). This solution however would re-classify Omega as a mathematical constant (as being derivable from other mathematical constants), leaving alpha as the only physical constant used in this model. From this mathematical Omega and reversing the above equation, we can solve α = 137.035996376...
This formula is of the form (where i is the imaginary unit )
(
i
a
b
b
(
1
−
b
)
)
{\displaystyle {\sqrt {\left(i\;a^{b}\;b^{(1-b)}\right)}}}
for which the real and imaginary parts will be equal and this implies a 45 degree angle in the complex plane (i.e.: this complex number lies exactly on the line y = x in the complex plane). This is relevant to particle rotations and symmetries, Quantum_superposition ... [ 6]
Euler's formula
e
i
x
=
cos
x
+
i
sin
x
{\displaystyle e^{ix}=\cos x+i\sin x}
Adding i
(
i
π
e
e
(
1
−
e
)
)
{\displaystyle {\sqrt {\left(i\pi ^{e}e^{(1-e)}\right)}}}
Solves to 1.4192587369597... + 1.4192587369597...i .
Reference List of dimensionless combinations. These can be solved using only α, Ω (and the mathematical constants 2, 3, π) as the units and scalars have cancelled. The precision of the results depends on the precision of the SI constants; combinations with G and k B return the least precise values. These combinations can be used to test the veracity of the MLTA geometries as natural Planck units. See also Anomalies (below).
Example
(
h
∗
)
3
(
e
∗
)
13
(
c
∗
)
24
=
(
2
3
π
4
Ω
4
r
13
v
5
)
3
/
(
2
7
π
4
Ω
3
r
3
α
v
3
)
7
.
(
2
π
Ω
2
v
)
24
=
α
13
2
106
π
64
(
Ω
15
)
5
=
{\displaystyle {\frac {(h^{*})^{3}}{(e^{*})^{13}(c^{*})^{24}}}=(2^{3}\pi ^{4}\Omega ^{4}{\frac {r^{13}}{v^{5}}})^{3}/({\frac {2^{7}\pi ^{4}\Omega ^{3}r^{3}}{\alpha v^{3}}})^{7}.(2\pi \Omega ^{2}v)^{24}={\frac {\alpha ^{13}}{2^{106}\pi ^{64}(\color {red}\Omega ^{15})^{5}\color {black}}}=}
0.228 473 759... 10-58
Note: the geometry
(
Ω
15
)
n
{\displaystyle \color {red}(\Omega ^{15})^{n}\color {black}}
(integer n ≥ 0) is common to all ratios where units and scalars cancel, suggesting a geometrical base-15.
Table 8. Dimensionless combinations
CODATA 2014 mean
(α, Ω) mean
units = 1
scalars = 1
k
B
e
c
h
=
{\displaystyle {\frac {k_{B}ec}{h}}=}
1.000 8254
(
k
B
∗
)
(
e
∗
)
(
c
∗
)
(
h
∗
)
{\displaystyle {\frac {(k_{B}^{*})(e^{*})(c^{*})}{(h^{*})}}}
= 1.0
(
u
29
)
(
u
−
27
)
(
u
17
)
(
u
19
)
=
1
{\displaystyle {\frac {(u^{29})(u^{-27})(u^{17})}{(u^{19})}}=1}
(
r
10
v
3
)
(
r
3
v
3
)
(
v
)
/
(
r
13
v
5
)
=
1
{\displaystyle ({\frac {r^{10}}{v^{3}}})({\frac {r^{3}}{v^{3}}})(v)/({\frac {r^{13}}{v^{5}}})=1}
h
3
e
13
c
24
=
{\displaystyle {\frac {h^{3}}{e^{13}c^{24}}}=}
0.228 473 639... 10-58
(
h
∗
)
3
(
e
∗
)
13
(
c
∗
)
24
=
α
13
2
106
π
64
(
Ω
15
)
5
=
{\displaystyle {\frac {(h^{*})^{3}}{(e^{*})^{13}(c^{*})^{24}}}={\frac {\alpha ^{13}}{2^{106}\pi ^{64}(\color {red}\Omega ^{15})^{5}\color {black}}}=}
0.228 473 759... 10-58
(
u
19
)
3
(
u
−
27
)
13
(
u
17
)
24
=
1
{\displaystyle {\frac {(u^{19})^{3}}{(u^{-27})^{13}(u^{17})^{24}}}=1}
(
r
13
v
5
)
3
/
(
r
3
v
3
)
13
(
v
24
)
=
1
{\displaystyle ({\frac {r^{13}}{v^{5}}})^{3}/({\frac {r^{3}}{v^{3}}})^{13}(v^{24})=1}
c
35
μ
0
9
R
7
=
{\displaystyle {\frac {c^{35}}{\mu _{0}^{9}R^{7}}}=}
0.326 103 528 6170... 10301
(
c
∗
)
35
(
μ
0
∗
)
9
(
R
∗
)
7
=
2
295
π
157
3
21
α
26
(
Ω
15
)
15
=
{\displaystyle {\frac {(c^{*})^{35}}{(\mu _{0}^{*})^{9}(R^{*})^{7}}}=2^{295}\pi ^{157}3^{21}\alpha ^{26}\color {red}(\Omega ^{15})^{15}\color {black}=}
0.326 103 528 6170... 10301
(
u
17
)
35
(
u
56
)
9
(
u
13
)
7
=
1
{\displaystyle {\frac {(u^{17})^{35}}{(u^{56})^{9}(u^{13})^{7}}}=1}
(
v
35
)
/
(
r
7
)
9
(
v
5
r
9
)
7
=
1
{\displaystyle (v^{35})/(r^{7})^{9}({\frac {v^{5}}{r^{9}}})^{7}=1}
c
9
e
4
m
e
3
=
{\displaystyle {\frac {c^{9}e^{4}}{m_{e}^{3}}}=}
0.170 514 342... 1092
(
c
∗
)
9
(
e
∗
)
4
(
m
e
∗
)
3
=
2
97
π
49
3
9
α
5
(
Ω
15
)
5
=
{\displaystyle {\frac {(c^{*})^{9}(e^{*})^{4}}{(m_{e}^{*})^{3}}}=2^{97}\pi ^{49}3^{9}\alpha ^{5}(\color {red}\Omega ^{15})^{5}\color {black}=}
0.170 514 368... 1092
(
u
29
)
(
u
−
27
)
(
u
17
)
(
u
19
)
=
1
{\displaystyle {\frac {(u^{29})(u^{-27})(u^{17})}{(u^{19})}}=1}
(
v
9
)
(
r
3
v
3
)
4
/
(
r
4
v
)
3
=
1
{\displaystyle (v^{9})({\frac {r^{3}}{v^{3}}})^{4}/({\frac {r^{4}}{v}})^{3}=1}
k
B
e
2
m
e
c
4
=
{\displaystyle {\frac {k_{B}}{e^{2}m_{e}c^{4}}}=}
73 095 507 858.
(
k
B
∗
)
(
e
∗
)
2
(
m
e
∗
)
(
c
∗
)
4
=
3
3
α
6
2
3
π
5
=
{\displaystyle {\frac {(k_{B}^{*})}{(e^{*})^{2}(m_{e}^{*})(c^{*})^{4}}}={\frac {3^{3}\alpha ^{6}}{2^{3}\pi ^{5}}}=}
73 035 235 897.
(
u
29
)
(
u
−
27
)
2
(
u
15
)
(
u
17
)
4
=
1
{\displaystyle {\frac {(u^{29})}{(u^{-27})^{2}(u^{15})(u^{17})^{4}}}=1}
(
r
10
v
3
)
/
(
r
3
v
3
)
2
(
r
4
v
)
(
v
)
4
=
1
{\displaystyle ({\frac {r^{10}}{v^{3}}})/({\frac {r^{3}}{v^{3}}})^{2}({\frac {r^{4}}{v}})(v)^{4}=1}
h
c
2
e
m
p
G
2
k
B
=
{\displaystyle {\frac {hc^{2}em_{p}}{G^{2}k_{B}}}=}
3.376 716
(
h
∗
)
(
c
∗
)
2
(
e
∗
)
(
m
p
∗
)
(
G
∗
)
2
(
k
B
∗
)
=
2
11
π
3
α
2
=
{\displaystyle {\frac {(h^{*})(c^{*})^{2}(e^{*})(m_{p}^{*})}{(G^{*})^{2}(k_{B}^{*})}}={\frac {2^{11}\pi ^{3}}{\alpha ^{2}}}=}
3.381 506
(
u
19
)
(
u
17
)
2
(
u
−
27
)
(
u
15
)
(
u
6
)
2
(
u
29
)
=
1
{\displaystyle {\frac {(u^{19})(u^{17})^{2}(u^{-27})(u^{15})}{(u^{6})^{2}(u^{29})}}=1}
(
r
13
v
5
)
v
2
(
r
3
v
3
)
(
r
4
v
1
)
/
(
r
5
v
2
)
2
(
r
10
v
3
)
=
1
{\displaystyle ({\frac {r^{13}}{v^{5}}})v^{2}({\frac {r^{3}}{v^{3}}})({\frac {r^{4}}{v^{1}}})/({\frac {r^{5}}{v^{2}}})^{2}({\frac {r^{10}}{v^{3}}})=1}
We can construct a table of constants using these 3 geometries. Setting
f
(
x
)
u
n
i
t
s
=
(
L
15
M
9
T
11
)
n
=
1
{\displaystyle f(x)\;units=({\frac {L^{15}}{M^{9}T^{11}}})^{n}=1}
i.e.: unit number θ = (-13*15) - (15*9) - (-30*11) = 0
i
=
π
2
Ω
15
{\displaystyle \color {red}i\color {black}=\pi ^{2}\Omega ^{15}}
, units =
f
(
x
)
{\displaystyle {\sqrt {f(x)}}}
= 1 (unit number = 0, no scalars)
x
=
Ω
v
r
2
{\displaystyle \color {red}x\color {black}=\Omega {\frac {v}{r^{2}}}}
, units =
L
M
T
{\displaystyle {\sqrt {\frac {L}{MT}}}}
= u1 = u (unit number = -13 -15 +30 = 2/2 = 1, with scalars v , r )
y
=
π
r
17
v
8
{\displaystyle \color {red}y\color {black}=\pi {\frac {r^{17}}{v^{8}}}}
, units =
M
2
T
{\displaystyle M^{2}T}
= 1, (unit number = 15*2 -30 = 0, with scalars v , r )
Note: The following suggests a numerical boundary to the values the SI constants can have.
v
r
2
=
a
1
/
3
=
1
t
2
/
15
k
1
/
5
=
v
k
{\displaystyle {\frac {v}{r^{2}}}=a^{1/3}={\frac {1}{t^{2/15}k^{1/5}}}={\frac {\sqrt {v}}{\sqrt {k}}}}
... = 23326079.1...; unit = u
r
17
v
8
=
k
2
t
=
k
17
/
4
v
15
/
4
=
.
.
.
{\displaystyle {\frac {r^{17}}{v^{8}}}=k^{2}t={\frac {k^{17/4}}{v^{15/4}}}=...}
gives a range from 0.812997... x10-59 to 0.123... x1060
Note: Influence of
f
(
x
)
{\displaystyle f(x)}
, units = 1
r
17
v
8
u
n
i
t
s
(
M
2
L
8
T
7
)
(
T
L
)
8
=
M
2
T
{\displaystyle {\frac {r^{17}}{v^{8}}}\;\;units\;({\frac {M^{2}L^{8}}{T^{7}}})({\frac {T}{L}})^{8}=M^{2}T}
r
17
u
n
i
t
s
(
M
L
T
)
17
/
4
f
x
1
/
4
=
M
2
L
8
T
7
{\displaystyle r^{17}\;\;units\;({\frac {M\;L}{T}})^{17/4}fx^{1/4}={\frac {M^{2}\;L^{8}}{T^{7}}}}
r
u
n
i
t
s
(
M
L
T
)
1
/
4
f
x
1
/
4
=
L
4
M
2
T
3
{\displaystyle r\;\;units\;({\frac {M\;L}{T}})^{1/4}fx^{1/4}={\frac {L^{4}}{M^{2}T^{3}}}}
Table 9. Table of Constants
Constant
θ
Geometrical object (α, Ω, v, r)
Unit
Calculated
CODATA 2014
Time (Planck)
−
30
{\displaystyle \color {red}-30\color {black}}
T
=
x
θ
i
2
y
3
=
π
r
9
v
6
{\displaystyle T=\color {red}{\frac {x^{\theta }i^{2}}{y^{3}}}\color {black}={\frac {\pi r^{9}}{v^{6}}}}
T
{\displaystyle T}
T = 5.390 517 866 e-44
tp = 5.391 247(60) e-44
Elementary charge
−
27
{\displaystyle \color {red}-27\color {black}}
e
∗
=
(
2
7
π
3
α
)
x
θ
i
2
y
3
=
(
2
7
π
3
α
)
π
Ω
3
r
3
v
3
{\displaystyle e^{*}=({\frac {2^{7}\pi ^{3}}{\alpha }})\color {red}{\frac {x^{\theta }i^{2}}{y^{3}}}\color {black}=({\frac {2^{7}\pi ^{3}}{\alpha }})\;{\frac {\pi \Omega ^{3}r^{3}}{v^{3}}}}
L
3
/
2
T
1
/
2
M
3
/
2
=
A
T
{\displaystyle {\frac {L^{3/2}}{T^{1/2}M^{3/2}}}=AT}
e* = 1.602 176 511 30 e-19
e = 1.602 176 620 8(98) e-19
Length (Planck)
−
13
{\displaystyle \color {red}-13\color {black}}
L
=
(
2
π
)
x
θ
i
y
=
(
2
π
)
π
Ω
2
r
9
v
5
{\displaystyle L=(2\pi )\color {red}{\frac {x^{\theta }i}{y}}\color {black}=(2\pi )\;{\frac {\pi \Omega ^{2}r^{9}}{v^{5}}}}
L
{\displaystyle L}
L = 0.161 603 660 096 e-34
lp = 0.161 622 9(38) e-34
Ampere
3
{\displaystyle \color {red}3\color {black}}
A
=
(
2
7
π
3
α
)
x
θ
=
(
2
7
π
3
α
)
Ω
3
v
3
r
6
{\displaystyle A=({\frac {2^{7}\pi ^{3}}{\alpha }})\color {red}x^{\theta }\color {black}=({\frac {2^{7}\pi ^{3}}{\alpha }})\;{\frac {\Omega ^{3}v^{3}}{r^{6}}}}
A
=
L
3
/
2
M
3
/
2
T
3
/
2
{\displaystyle A={\frac {L^{3/2}}{M^{3/2}T^{3/2}}}}
A = 0.297 221 e25
e/tp = 0.297 181 e25
Gravitational constant
6
{\displaystyle \color {red}6\color {black}}
G
∗
=
(
2
3
π
3
)
x
θ
y
=
(
2
3
π
3
)
π
Ω
6
r
5
v
2
{\displaystyle G^{*}=(2^{3}\pi ^{3})\color {red}\color {red}x^{\theta }y\color {black}=(2^{3}\pi ^{3})\;{\frac {\pi \Omega ^{6}r^{5}}{v^{2}}}}
L
3
M
T
2
{\displaystyle {\frac {L^{3}}{MT^{2}}}}
G* = 6.672 497 192 29 e11
G = 6.674 08(31) e-11
8
{\displaystyle \color {red}8\color {black}}
X
=
(
2
4
π
4
)
x
θ
y
=
(
2
4
π
4
)
π
Ω
8
r
{\displaystyle X=(2^{4}\pi ^{4})\color {red}\color {red}x^{\theta }y\color {black}=(2^{4}\pi ^{4})\pi \Omega ^{8}r}
L
4
M
2
T
3
{\displaystyle {\frac {L^{4}}{M^{2}T^{3}}}}
X = 918 977.554 22
Mass (Planck)
15
{\displaystyle \color {red}\color {red}15\color {black}}
M
=
x
θ
y
2
i
=
r
4
v
{\displaystyle M=\color {red}\color {red}{\frac {x^{\theta }y^{2}}{i}}\color {black}={\frac {r^{4}}{v}}}
M
{\displaystyle M}
M = .217 672 817 580 e-7
mP = .217 647 0(51) e-7
sqrt(momentum)
16
{\displaystyle \color {red}16\color {black}}
P
=
x
θ
y
2
i
=
Ω
r
2
{\displaystyle P=\color {red}\color {red}{\frac {x^{\theta }y^{2}}{i}}\color {black}=\Omega r^{2}}
M
1
/
2
L
1
/
2
T
1
/
2
{\displaystyle {\frac {M^{1/2}L^{1/2}}{T^{1/2}}}}
Velocity
17
{\displaystyle \color {red}\color {red}17\color {black}}
V
=
(
2
π
)
x
θ
y
2
i
=
(
2
π
)
Ω
2
v
{\displaystyle V=(2\pi )\color {red}\color {red}{\frac {x^{\theta }y^{2}}{i}}\color {black}=(2\pi )\;\Omega ^{2}v}
V
=
L
T
{\displaystyle V={\frac {L}{T}}}
V = 299 792 458
c = 299 792 458
Planck constant
19
{\displaystyle \color {red}19\color {black}}
h
∗
=
(
2
3
π
3
)
x
θ
y
3
i
=
(
2
3
π
3
)
π
Ω
4
r
13
v
5
{\displaystyle h^{*}=(2^{3}\pi ^{3})\color {red}{\frac {x^{\theta }y^{3}}{i}}\color {black}=(2^{3}\pi ^{3})\;{\frac {\pi \Omega ^{4}r^{13}}{v^{5}}}}
L
2
M
T
{\displaystyle {\frac {L^{2}M}{T}}}
h* = 6.626 069 134 e-34
h = 6.626 070 040(81) e-34
Planck temperature
20
{\displaystyle \color {red}\color {red}20\color {black}}
T
p
∗
=
(
2
7
π
3
α
)
x
θ
y
2
i
=
(
2
7
π
3
α
)
Ω
5
v
4
r
6
{\displaystyle {T_{p}}^{*}=({\frac {2^{7}\pi ^{3}}{\alpha }})\color {red}\color {red}{\frac {x^{\theta }y^{2}}{i}}\color {black}=({\frac {2^{7}\pi ^{3}}{\alpha }})\;{\frac {\Omega ^{5}v^{4}}{r^{6}}}}
L
5
/
2
M
3
/
2
T
5
/
2
=
A
V
{\displaystyle {\frac {L^{5/2}}{M^{3/2}T^{5/2}}}=AV}
Tp * = 1.418 145 219 e32
Tp = 1.416 784(16) e32
Boltzmann constant
29
{\displaystyle \color {red}\color {red}29\color {black}}
k
B
∗
=
(
α
2
5
π
)
x
θ
y
4
i
2
=
(
α
2
5
π
)
r
10
Ω
v
3
{\displaystyle {k_{B}}^{*}=({\frac {\alpha }{2^{5}\pi }})\color {red}{\frac {x^{\theta }y^{4}}{i^{2}}}\color {black}=({\frac {\alpha }{2^{5}\pi }})\;{\frac {r^{10}}{\Omega v^{3}}}}
M
5
/
2
T
1
/
2
L
1
/
2
=
M
L
T
A
{\displaystyle {\frac {M^{5/2}T^{1/2}}{L^{1/2}}}={\frac {ML}{TA}}}
kB * = 1.379 510 147 52 e-23
kB = 1.380 648 52(79) e-23
Vacuum permeability
56
{\displaystyle \color {red}56\color {black}}
μ
0
∗
=
(
α
2
11
π
4
)
x
θ
y
7
i
4
=
(
α
2
11
π
4
)
r
7
π
Ω
4
{\displaystyle {\mu _{0}}^{*}=({\frac {\alpha }{2^{11}\pi ^{4}}})\color {red}{\frac {x^{\theta }y^{7}}{i^{4}}}\color {black}=({\frac {\alpha }{2^{11}\pi ^{4}}})\;{\frac {r^{7}}{\pi \Omega ^{4}}}}
M
L
T
2
A
2
{\displaystyle {\frac {M\;L}{T^{2}A^{2}}}}
μ0 * = 4π/10^7
μ0 = 4π/10^7
From the perspective of geometries
note:
(
u
15
)
n
{\displaystyle \color {red}(u^{15})^{n}\color {black}}
constants have no Omega term.
Table 10. Dimensioned constants; geometrical vs CODATA 2014
Constant
In Planck units
Geometrical object
SI calculated (r, v, Ω, α* )
SI CODATA 2014 [ 7]
Speed of light
V
c
∗
=
(
2
π
Ω
2
)
v
,
u
17
{\displaystyle c^{*}=(2\pi \Omega ^{2})v,\;u^{17}}
c* = 299 792 458, unit = u17
c = 299 792 458 (exact)
Fine structure constant
α* = 137.035 999 139 (mean)
α = 137.035 999 139(31)
Rydberg constant
R
∗
=
(
m
e
4
π
L
α
2
M
)
{\displaystyle R^{*}=({\frac {m_{e}}{4\pi L\alpha ^{2}M}})}
R
∗
=
1
2
23
3
3
π
11
α
5
Ω
17
v
5
r
9
,
u
13
{\displaystyle R^{*}={\frac {1}{2^{23}3^{3}\pi ^{11}\alpha ^{5}\Omega ^{17}}}{\frac {v^{5}}{r^{9}}},\;u^{13}}
R* = 10 973 731.568 508, unit = u13
R = 10 973 731.568 508(65)
Vacuum permeability
μ
0
∗
=
4
π
V
2
M
α
L
A
2
{\displaystyle \mu _{0}^{*}={\frac {4\pi V^{2}M}{\alpha LA^{2}}}}
μ
0
∗
=
α
2
11
π
5
Ω
4
r
7
,
u
56
{\displaystyle \mu _{0}^{*}={\frac {\alpha }{2^{11}\pi ^{5}\Omega ^{4}}}r^{7},\;u^{56}}
μ0 * = 4π/10^7, unit = u56
μ0 = 4π/10^7 (exact)
Vacuum permittivity
ϵ
0
∗
=
1
μ
0
∗
(
c
∗
)
2
{\displaystyle \epsilon _{0}^{*}={\frac {1}{\mu _{0}^{*}(c^{*})^{2}}}}
ϵ
0
∗
=
2
9
π
3
α
1
r
7
v
2
,
1
/
(
u
15
)
6
=
u
−
90
{\displaystyle \epsilon _{0}^{*}={\frac {2^{9}\pi ^{3}}{\alpha }}{\frac {1}{r^{7}v^{2}}},\;\color {red}1/(u^{15})^{6}\color {black}=u^{-90}}
Planck constant
h
∗
=
2
π
M
V
L
{\displaystyle h^{*}=2\pi MVL}
h
∗
=
2
3
π
4
Ω
4
r
13
v
5
,
u
19
{\displaystyle h^{*}=2^{3}\pi ^{4}\Omega ^{4}{\frac {r^{13}}{v^{5}}},\;u^{19}}
h* = 6.626 069 134 e-34, unit = u19
h = 6.626 070 040(81) e-34
Gravitational constant
G
∗
=
V
2
L
M
{\displaystyle G^{*}={\frac {V^{2}L}{M}}}
G
∗
=
2
3
π
4
Ω
6
r
5
v
2
,
u
6
{\displaystyle G^{*}=2^{3}\pi ^{4}\Omega ^{6}{\frac {r^{5}}{v^{2}}},\;u^{6}}
G* = 6.672 497 192 29 e11, unit = u6
G = 6.674 08(31) e-11
Elementary charge
e
∗
=
A
T
{\displaystyle e^{*}=AT}
e
∗
=
2
7
π
4
Ω
3
α
r
3
v
3
,
u
−
27
{\displaystyle e^{*}={\frac {2^{7}\pi ^{4}\Omega ^{3}}{\alpha }}{\frac {r^{3}}{v^{3}}},\;u^{-27}}
e* = 1.602 176 511 30 e-19, unit = u-27
e = 1.602 176 620 8(98) e-19
Boltzmann constant
k
B
∗
=
2
π
V
M
A
{\displaystyle k_{B}^{*}={\frac {2\pi VM}{A}}}
k
B
∗
=
α
2
5
π
Ω
r
10
v
3
,
u
29
{\displaystyle k_{B}^{*}={\frac {\alpha }{2^{5}\pi \Omega }}{\frac {r^{10}}{v^{3}}},\;u^{29}}
kB * = 1.379 510 147 52 e-23, unit = u29
kB = 1.380 648 52(79) e-23
Electron mass
m
e
∗
=
M
f
e
,
u
15
{\displaystyle m_{e}^{*}={\frac {M}{f_{e}}},\;u^{15}}
me * = 9.109 382 312 56 e-31, unit = u15
me = 9.109 383 56(11) e-31
Classical electron radius
λ
e
∗
=
2
π
L
f
e
,
u
−
13
{\displaystyle \lambda _{e}^{*}=2\pi Lf_{e},\;u^{-13}}
λe * = 2.426 310 2366 e-12, unit = u-13
λe = 2.426 310 236 7(11) e-12
Planck temperature
T
p
∗
=
A
V
π
{\displaystyle T_{p}^{*}={\frac {AV}{\pi }}}
T
p
∗
=
2
7
π
3
Ω
5
α
v
4
r
6
,
u
20
{\displaystyle T_{p}^{*}={\frac {2^{7}\pi ^{3}\Omega ^{5}}{\alpha }}{\frac {v^{4}}{r^{6}}},\;u^{20}}
Tp * = 1.418 145 219 e32, unit = u20
Tp = 1.416 784(16) e32
Planck mass
M
m
P
∗
=
(
1
)
r
4
v
,
(
u
15
)
1
{\displaystyle m_{P}^{*}=(1){\frac {r^{4}}{v}},\;\color {red}\color {red}(u^{15})^{1}\color {black}}
mP * = .217 672 817 580 e-7, unit = u15
mP = .217 647 0(51) e-7
Planck length
L
l
p
∗
=
(
2
π
2
Ω
2
)
r
9
v
5
,
u
−
13
{\displaystyle l_{p}^{*}=(2\pi ^{2}\Omega ^{2}){\frac {r^{9}}{v^{5}}},\;u^{-13}}
lp * = .161 603 660 096 e-34, unit = u-13
lp = .161 622 9(38) e-34
Planck time
T
t
p
∗
=
(
π
)
r
9
v
6
,
1
/
(
u
15
)
2
{\displaystyle t_{p}^{*}=(\pi ){\frac {r^{9}}{v^{6}}},\;\color {red}\color {red}1/(u^{15})^{2}\color {black}}
tp * = 5.390 517 866 e-44, unit = u-30
tp = 5.391 247(60) e-44
Ampere
A
=
16
V
3
α
P
3
{\displaystyle A={\frac {16V^{3}}{\alpha P^{3}}}}
A
∗
=
2
7
π
3
Ω
3
α
v
3
r
6
,
u
3
{\displaystyle A^{*}={\frac {2^{7}\pi ^{3}\Omega ^{3}}{\alpha }}{\frac {v^{3}}{r^{6}}},\;u^{3}}
A* = 0.297 221 e25, unit = u3
e/tp = 0.297 181 e25
Von Klitzing constant
R
K
∗
=
(
h
e
2
)
∗
{\displaystyle R_{K}^{*}=({\frac {h}{e^{2}}})^{*}}
R
K
∗
=
α
2
2
11
π
4
Ω
2
r
7
v
,
u
73
{\displaystyle R_{K}^{*}={\frac {\alpha ^{2}}{2^{11}\pi ^{4}\Omega ^{2}}}r^{7}v,\;u^{73}}
RK * = 25812.807 455 59, unit = u73
RK = 25812.807 455 5(59)
Gyromagnetic ratio
γ
e
/
2
π
=
g
l
p
∗
m
P
∗
2
k
B
∗
m
e
∗
,
u
n
i
t
=
u
−
42
{\displaystyle \gamma _{e}/2\pi ={\frac {gl_{p}^{*}m_{P}^{*}}{2k_{B}^{*}m_{e}^{*}}},\;unit=u^{-42}}
γe /2π* = 28024.953 55, unit = u-42
γe /2π = 28024.951 64(17)
Note that r, v, Ω, α are dimensionless numbers, however when we replace u θ with the SI unit equivalents (u 15 → kg, u -13 → m, u -30 → s, ...), the geometrical objects (i.e.: c* = 2πΩ2 v = 299792458, units = u17 ) become indistinguishable from their respective physical constants (i.e.: c = 299792458, units = m/s).
Following the 26th General Conference on Weights and Measures (2019 redefinition of SI base units ) are fixed the numerical values of the 4 physical constants (h, c, e, kB ). In the context of this model however only 2 base units may be assigned by committee as the rest are then numerically fixed by default and so the revision may lead to unintended consequences.
For example, if we solve using the above formulas;
R
∗
=
4
π
5
3
3
c
4
α
8
e
3
=
10973
729.082
465
{\displaystyle R^{*}={\frac {4\pi ^{5}}{3^{3}c^{4}\alpha ^{8}e^{3}}}=10973\;729.082\;465}
(
m
e
∗
)
3
=
2
4
π
10
R
μ
0
3
3
6
c
8
α
7
,
m
e
∗
=
9.109
382
3259
10
−
31
{\displaystyle {(m_{e}^{*})}^{3}={\frac {2^{4}\pi ^{10}R\mu _{0}^{3}}{3^{6}c^{8}\alpha ^{7}}},\;m_{e}^{*}=9.109\;382\;3259\;10^{-31}}
(
μ
0
∗
)
3
=
3
6
h
3
c
5
α
13
R
2
2
π
10
,
μ
0
∗
=
1.256
637
251
88
10
−
6
{\displaystyle {(\mu _{0}^{*})}^{3}={\frac {3^{6}h^{3}c^{5}\alpha ^{13}R^{2}}{2\pi ^{10}}},\;\mu _{0}^{*}=1.256\;637\;251\;88\;10^{-6}}
(
h
∗
)
3
=
2
π
10
μ
0
3
3
6
c
5
α
13
R
2
,
h
∗
=
6.626
069
149
10
−
34
{\displaystyle {(h^{*})}^{3}={\frac {2\pi ^{10}\mu _{0}^{3}}{3^{6}c^{5}\alpha ^{13}R^{2}}},\;h^{*}=6.626\;069\;149\;10^{-34}}
(
e
∗
)
3
=
4
π
5
3
3
c
4
α
8
R
,
e
∗
=
1.602
176
513
10
−
19
{\displaystyle {(e^{*})}^{3}={\frac {4\pi ^{5}}{3^{3}c^{4}\alpha ^{8}R}},\;e^{*}=1.602\;176\;513\;10^{-19}}
The following are notes on the anomalies as evidence of a simulation universe source code [ 9] .
In this ratio, the MLT units and klt scalars both cancel; units = scalars = 1, reverting to the base MLT objects. Setting the scalars klt for SI Planck units;
k = 0.217 672 817 580... x 10-7 kg
l = 0.203 220 869 487... x 10-36 m
t = 0.171 585 512 841... x 10-43 s
L
15
M
9
T
11
=
(
2
π
2
Ω
2
)
15
(
1
)
9
(
π
)
11
(
l
15
k
9
t
11
)
=
l
p
15
m
P
9
t
p
11
{\displaystyle {\frac {L^{15}}{M^{9}T^{11}}}={\frac {(2\pi ^{2}\Omega ^{2})^{15}}{(1)^{9}(\pi )^{11}}}({\frac {l^{15}}{k^{9}t^{11}}})={\frac {l_{p}^{15}}{m_{P}^{9}t_{p}^{11}}}}
(CODATA 2018 mean)
The klt scalars cancel, leaving;
L
15
M
9
T
11
=
(
2
π
2
Ω
2
)
15
(
1
)
9
(
π
)
11
(
l
15
k
9
t
11
)
=
2
15
π
19
(
Ω
15
)
2
=
{\displaystyle {\frac {L^{15}}{M^{9}T^{11}}}={\frac {(2\pi ^{2}\Omega ^{2})^{15}}{(1)^{9}(\pi )^{11}}}({\frac {l^{15}}{k^{9}t^{11}}})=2^{15}\pi ^{19}\color {red}(\Omega ^{15})^{2}\color {black}=}
0.109 293... 1024 ,
(
l
15
k
9
t
11
)
=
1
,
u
−
13
∗
15
u
15
∗
9
u
−
30
∗
11
=
1
{\displaystyle ({\frac {l^{15}}{k^{9}t^{11}}})=1,\;{\frac {u^{-13*15}}{u^{15*9}u^{-30*11}}}=1}
Solving for the SI units;
l
p
15
m
P
9
t
p
11
=
(
1.616255
e
−
35
)
15
(
2.176434
e
−
8
)
9
(
5.391247
e
−
44
)
11
=
{\displaystyle {\frac {l_{p}^{15}}{m_{P}^{9}t_{p}^{11}}}={\frac {(1.616255e-35)^{15}}{(2.176434e-8)^{9}(5.391247e-44)^{11}}}=}
0.109 485... 1024
a = 0.126 918 588 592... x 1023 A
A
3
L
3
T
=
(
2
7
π
3
Ω
3
α
)
3
(
2
π
2
Ω
2
)
3
(
π
)
(
a
3
l
3
t
)
=
2
24
π
14
(
Ω
15
)
1
α
3
=
{\displaystyle {\frac {A^{3}L^{3}}{T}}=({\frac {2^{7}\pi ^{3}\Omega ^{3}}{\alpha }})^{3}{\frac {(2\pi ^{2}\Omega ^{2})^{3}}{(\pi )}}({\frac {a^{3}l^{3}}{t}})={\frac {2^{24}\pi ^{14}\color {red}(\Omega ^{15})^{1}\color {black}}{\alpha ^{3}}}=}
0.205 571... 1013 ,
(
a
3
l
3
t
)
=
1
,
u
3
∗
3
u
−
13
∗
3
u
−
30
=
1
{\displaystyle ({\frac {a^{3}l^{3}}{t}})=1,\;{\frac {u^{3*3}u^{-13*3}}{u^{-30}}}=1}
(
e
/
t
p
)
3
l
p
3
t
p
=
(
1.602176634
e
−
19
/
5.391247
e
−
44
)
3
(
1.616255
e
−
35
)
3
(
5.391247
e
−
44
)
=
{\displaystyle {\frac {(e/t_{p})^{3}l_{p}^{3}}{t_{p}}}={\frac {(1.602176634e-19/5.391247e-44)^{3}(1.616255e-35)^{3}}{(5.391247e-44)}}=}
0.205 543... 1013 ,
u
n
i
t
s
=
(
C
/
s
)
3
m
3
s
{\displaystyle units={\frac {(C/s)^{3}m^{3}}{s}}}
The Planck units are known with low precision, and so by defining the 3 most accurately known dimensioned constants in terms of these objects (c, R = Rydberg constant,
μ
0
{\displaystyle \mu _{0}}
; CODATA 2014 mean values), we can test to greater precision;
(
c
∗
)
35
(
μ
0
∗
)
9
(
R
∗
)
7
=
(
2
π
Ω
2
v
)
35
/
(
α
r
7
2
11
π
5
Ω
4
)
9
.
(
v
5
2
23
3
3
π
11
α
5
Ω
17
r
9
)
7
=
2
295
π
157
3
21
α
26
(
Ω
15
)
15
=
{\displaystyle {\frac {(c^{*})^{35}}{(\mu _{0}^{*})^{9}(R^{*})^{7}}}=(2\pi \Omega ^{2}v)^{35}/({\frac {\alpha r^{7}}{2^{11}\pi ^{5}\Omega ^{4}}})^{9}.({\frac {v^{5}}{2^{23}3^{3}\pi ^{11}\alpha ^{5}\Omega ^{17}r^{9}}})^{7}=2^{295}\pi ^{157}3^{21}\alpha ^{26}\color {red}(\Omega ^{15})^{15}\color {black}=}
0.326 103 528 6170... 10301 ,
(
u
17
)
35
(
u
56
)
9
(
u
13
)
7
=
1
,
(
v
35
)
/
(
r
7
)
9
(
v
5
r
9
)
7
=
1
{\displaystyle {\frac {(u^{17})^{35}}{(u^{56})^{9}(u^{13})^{7}}}=1,\;(v^{35})/(r^{7})^{9}({\frac {v^{5}}{r^{9}}})^{7}=1}
c
35
μ
0
9
R
7
=
(
299792458
)
35
(
4
π
/
10
7
)
9
(
10973731.568160
)
7
=
{\displaystyle {\frac {c^{35}}{\mu _{0}^{9}R^{7}}}={\frac {(299792458)^{35}}{(4\pi /10^{7})^{9}(10973731.568160)^{7}}}=}
0.326 103 528 6170... 10301 ,
u
n
i
t
s
=
m
33
A
18
s
17
k
g
9
==
(
u
−
13
)
33
(
u
3
)
18
(
u
−
30
)
17
(
u
15
)
9
=
1
{\displaystyle units={\frac {m^{33}A^{18}}{s^{17}kg^{9}}}=={\frac {(u^{-13})^{33}(u^{3})^{18}}{(u^{-30})^{17}(u^{15})^{9}}}=1}
(
k
B
∗
)
(
e
∗
)
(
c
∗
)
(
h
∗
)
=
(
α
2
5
π
Ω
r
10
v
3
)
(
2
7
π
4
Ω
3
α
r
3
v
3
)
(
2
π
Ω
2
v
)
/
(
2
3
π
4
Ω
4
r
13
v
5
)
{\displaystyle {\frac {(k_{B}^{*})(e^{*})(c^{*})}{(h^{*})}}=({\frac {\alpha }{2^{5}\pi \Omega }}{\frac {r^{10}}{v^{3}}})({\frac {2^{7}\pi ^{4}\Omega ^{3}}{\alpha }}{\frac {r^{3}}{v^{3}}})(2\pi \Omega ^{2}v)/(2^{3}\pi ^{4}\Omega ^{4}{\frac {r^{13}}{v^{5}}})}
= 1.0 ,
(
u
29
)
(
u
−
27
)
(
u
17
)
(
u
19
)
=
1
,
(
r
10
v
3
)
(
r
3
v
3
)
(
v
)
/
(
r
13
v
5
)
=
1
{\displaystyle {\frac {(u^{29})(u^{-27})(u^{17})}{(u^{19})}}=1,\;({\frac {r^{10}}{v^{3}}})({\frac {r^{3}}{v^{3}}})(v)/({\frac {r^{13}}{v^{5}}})=1}
k
B
e
c
h
=
{\displaystyle {\frac {k_{B}ec}{h}}=}
1.000 8254 ,
u
n
i
t
s
=
m
C
s
2
K
==
(
u
−
13
)
(
u
−
27
)
(
u
−
30
)
2
(
u
20
)
=
1
{\displaystyle units={\frac {mC}{s^{2}K}}=={\frac {(u^{-13})(u^{-27})}{(u^{-30})^{2}(u^{20})}}=1}
(
h
∗
)
3
(
e
∗
)
13
(
c
∗
)
24
=
(
2
3
π
4
Ω
4
r
13
v
5
)
3
/
(
2
7
π
4
Ω
3
r
3
α
v
3
)
7
.
(
2
π
Ω
2
v
)
24
=
α
13
2
106
π
64
(
Ω
15
)
5
=
{\displaystyle {\frac {(h^{*})^{3}}{(e^{*})^{13}(c^{*})^{24}}}=(2^{3}\pi ^{4}\Omega ^{4}{\frac {r^{13}}{v^{5}}})^{3}/({\frac {2^{7}\pi ^{4}\Omega ^{3}r^{3}}{\alpha v^{3}}})^{7}.(2\pi \Omega ^{2}v)^{24}={\frac {\alpha ^{13}}{2^{106}\pi ^{64}(\color {red}\Omega ^{15})^{5}\color {black}}}=}
0.228 473 759... 10-58 ,
(
u
19
)
3
(
u
−
27
)
13
(
u
17
)
24
=
1
,
(
r
13
v
5
)
3
/
(
r
3
v
3
)
13
(
v
24
)
=
1
{\displaystyle {\frac {(u^{19})^{3}}{(u^{-27})^{13}(u^{17})^{24}}}=1,\;({\frac {r^{13}}{v^{5}}})^{3}/({\frac {r^{3}}{v^{3}}})^{13}(v^{24})=1}
h
3
e
13
c
24
=
{\displaystyle {\frac {h^{3}}{e^{13}c^{24}}}=}
0.228 473 639... 10-58 ,
u
n
i
t
s
=
k
g
3
s
21
m
18
C
13
==
(
u
15
)
3
(
u
−
30
)
21
(
u
−
13
)
18
(
u
−
27
)
13
=
1
{\displaystyle units={\frac {kg^{3}s^{21}}{m^{18}C^{13}}}=={\frac {(u^{15})^{3}(u^{-30})^{21}}{(u^{-13})^{18}(u^{-27})^{13}}}=1}
σ
e
=
3
α
2
A
L
2
π
2
=
2
7
3
π
3
α
Ω
5
r
3
v
2
,
u
−
10
{\displaystyle \sigma _{e}={\frac {3\alpha ^{2}AL}{2\pi ^{2}}}={2^{7}3\pi ^{3}\alpha \Omega ^{5}}{\frac {r^{3}}{v^{2}}},\;u^{-10}}
f
e
=
σ
e
3
2
T
=
2
20
3
3
π
8
α
3
(
Ω
15
)
,
(
u
−
10
)
3
u
−
30
=
1
,
(
r
3
v
2
)
3
v
6
r
9
=
1
{\displaystyle f_{e}={\frac {\sigma _{e}^{3}}{2T}}=2^{20}3^{3}\pi ^{8}\alpha ^{3}(\color {red}\Omega ^{15})\color {black},\;{\frac {(u^{-10})^{3}}{u^{-30}}}=1,\;({\frac {r^{3}}{v^{2}}})^{3}{\frac {v^{6}}{r^{9}}}=1}
(
m
e
∗
)
=
M
f
e
=
9.109
382
3227
10
−
31
u
15
{\displaystyle (m_{e}^{*})={\frac {M}{f_{e}}}=\color {blue}9.109\;382\;3227\;10^{-31}\color {black}\;u^{15}}
(
m
e
∗
)
=
2
3
π
5
(
h
∗
)
3
3
α
6
(
e
∗
)
3
(
c
∗
)
5
=
1
2
20
π
8
3
3
α
3
(
Ω
15
)
r
4
u
15
v
=
9.109
382
3227
10
−
31
u
15
{\displaystyle (m_{e}^{*})={\frac {2^{3}\pi ^{5}(h^{*})}{3^{3}\alpha ^{6}(e^{*})^{3}(c^{*})^{5}}}={\frac {1}{2^{20}\pi ^{8}3^{3}\alpha ^{3}(\color {red}\Omega ^{15})\color {black}}}{\frac {r^{4}u^{15}}{v}}=\color {blue}9.109\;382\;3227\;10^{-31}\color {black}\;u^{15}}
m
e
=
9.109
383
7015...
10
−
31
k
g
{\displaystyle m_{e}=\color {blue}9.109\;383\;7015...\;10^{-31}\color {black}\;kg}
(
λ
e
∗
)
=
2
π
L
f
e
=
2.426
310
238
667
10
−
12
u
−
13
{\displaystyle (\lambda _{e}^{*})=2\pi Lf_{e}=\color {purple}2.426\;310\;238\;667\;10^{-12}\color {black}\;u^{-13}}
λ
e
=
h
m
e
c
=
2.426
310
238
67
10
−
12
m
{\displaystyle \lambda _{e}={\frac {h}{m_{e}c}}=\color {purple}2.426\;310\;238\;67\;10^{-12}\color {black}\;m}
(
m
e
∗
)
=
M
f
e
,
f
e
=
2
20
3
3
π
8
α
3
(
Ω
15
)
1
{\displaystyle (m_{e}^{*})={\frac {M}{f_{e}}},\;f_{e}=2^{20}3^{3}\pi ^{8}\alpha ^{3}(\color {red}\Omega ^{15})^{1}\color {black}}
, units = scalars = 1 (me formula )
(
c
∗
)
9
(
e
∗
)
4
(
m
e
∗
)
3
=
2
97
π
49
3
9
α
5
(
Ω
15
)
5
=
{\displaystyle {\frac {(c^{*})^{9}(e^{*})^{4}}{(m_{e}^{*})^{3}}}=2^{97}\pi ^{49}3^{9}\alpha ^{5}(\color {red}\Omega ^{15})^{5}\color {black}=}
0.170 514 368... 1092 ,
(
u
17
)
9
(
u
−
27
)
4
(
u
15
)
3
=
1
,
(
v
9
)
(
r
3
v
3
)
4
/
(
r
4
v
)
3
=
1
{\displaystyle {\frac {(u^{17})^{9}(u^{-27})^{4}}{(u^{15})^{3}}}=1,\;(v^{9})({\frac {r^{3}}{v^{3}}})^{4}/({\frac {r^{4}}{v}})^{3}=1}
c
9
e
4
m
e
3
=
{\displaystyle {\frac {c^{9}e^{4}}{m_{e}^{3}}}=}
0.170 514 342... 1092 ,
u
n
i
t
s
=
m
9
C
4
s
9
k
g
3
==
(
u
−
13
)
9
(
u
−
27
)
4
(
u
−
30
)
9
(
u
15
)
3
=
1
{\displaystyle units={\frac {m^{9}C^{4}}{s^{9}kg^{3}}}=={\frac {(u^{-13})^{9}(u^{-27})^{4}}{(u^{-30})^{9}(u^{15})^{3}}}=1}
(
k
B
∗
)
(
e
∗
)
2
(
m
e
∗
)
(
c
∗
)
4
=
3
3
α
6
2
3
π
5
=
{\displaystyle {\frac {(k_{B}^{*})}{(e^{*})^{2}(m_{e}^{*})(c^{*})^{4}}}={\frac {3^{3}\alpha ^{6}}{2^{3}\pi ^{5}}}=}
73 035 235 897. ,
(
u
29
)
(
u
−
27
)
2
(
u
15
)
(
u
17
)
4
=
1
,
(
r
10
v
3
)
/
(
r
3
v
3
)
2
(
r
4
v
)
(
v
)
4
=
1
{\displaystyle {\frac {(u^{29})}{(u^{-27})^{2}(u^{15})(u^{17})^{4}}}=1,\;({\frac {r^{10}}{v^{3}}})/({\frac {r^{3}}{v^{3}}})^{2}({\frac {r^{4}}{v}})(v)^{4}=1}
k
B
e
2
m
e
c
4
=
{\displaystyle {\frac {k_{B}}{e^{2}m_{e}c^{4}}}=}
73 095 507 858. ,
u
n
i
t
s
=
s
2
m
2
K
C
2
==
(
u
−
30
)
2
(
u
−
13
)
2
(
u
20
)
(
u
−
27
)
2
=
1
{\displaystyle units={\frac {s^{2}}{m^{2}KC^{2}}}=={\frac {(u^{-30})^{2}}{(u^{-13})^{2}(u^{20})(u^{-27})^{2}}}=1}
These 3 constants, Planck mass, Planck time and the vacuum permittivity have no Omega term.
M
4
(
ϵ
0
∗
)
T
=
(
1
)
(
2
9
π
3
α
)
/
(
π
)
=
2
9
π
2
α
=
{\displaystyle {\frac {M^{4}(\epsilon _{0}^{*})}{T}}=(1)({\frac {2^{9}\pi ^{3}}{\alpha }})/(\pi )={\frac {2^{9}\pi ^{2}}{\alpha }}=}
36.875 ,
(
u
15
)
4
(
u
−
90
)
(
u
−
30
)
=
1
,
(
r
4
v
)
4
(
1
r
7
v
2
)
/
(
r
9
v
6
)
=
1
{\displaystyle {\frac {(u^{15})^{4}(u^{-90})}{(u^{-30})}}=1,\;({\frac {r^{4}}{v}})^{4}({\frac {1}{r^{7}v^{2}}})/({\frac {r^{9}}{v^{6}}})=1}
m
p
4
(
ϵ
0
)
t
p
=
{\displaystyle {\frac {m_{p}^{4}(\epsilon _{0})}{t_{p}}}=}
36.850 ,
u
n
i
t
s
=
k
g
4
s
s
4
A
2
m
3
k
g
=
k
g
3
A
2
s
3
m
3
==
(
u
15
)
3
(
u
3
)
2
(
u
−
30
)
3
(
u
−
13
)
3
=
1
{\displaystyle units={\frac {kg^{4}}{s}}{\frac {s^{4}A^{2}}{m^{3}kg}}={\frac {kg^{3}A^{2}s^{3}}{m^{3}}}=={\frac {(u^{15})^{3}(u^{3})^{2}(u^{-30})^{3}}{(u^{-13})^{3}}}=1}
(
h
∗
)
(
c
∗
)
2
(
e
∗
)
(
m
e
∗
)
(
G
∗
)
2
(
k
B
∗
)
=
(
m
e
∗
)
(
2
11
π
3
α
2
)
=
{\displaystyle {\frac {(h^{*})(c^{*})^{2}(e^{*})(m_{e}^{*})}{(G^{*})^{2}(k_{B}^{*})}}=(m_{e}^{*})({\frac {2^{11}\pi ^{3}}{\alpha ^{2}}})=}
0.1415... 10-21 ,
(
u
19
)
(
u
17
)
2
(
u
−
27
)
(
u
15
)
(
u
6
)
2
(
u
29
)
=
1
,
(
r
13
v
5
)
v
2
(
r
3
v
3
)
(
r
4
v
1
)
/
(
r
5
v
2
)
2
(
r
10
v
3
)
=
1
{\displaystyle {\frac {(u^{19})(u^{17})^{2}(u^{-27})(u^{15})}{(u^{6})^{2}(u^{29})}}=1,\;({\frac {r^{13}}{v^{5}}})v^{2}({\frac {r^{3}}{v^{3}}})({\frac {r^{4}}{v^{1}}})/({\frac {r^{5}}{v^{2}}})^{2}({\frac {r^{10}}{v^{3}}})=1}
h
c
2
e
m
e
G
2
k
B
=
{\displaystyle {\frac {hc^{2}em_{e}}{G^{2}k_{B}}}=}
0.1413... 10-21 ,
u
n
i
t
s
=
k
g
3
s
3
C
K
m
4
==
(
u
15
)
3
(
u
−
30
)
3
(
u
−
27
)
(
u
20
)
(
u
−
13
)
4
=
1
{\displaystyle units={\frac {kg^{3}s^{3}CK}{m^{4}}}=={\frac {(u^{15})^{3}(u^{-30})^{3}(u^{-27})(u^{20})}{(u^{-13})^{4}}}=1}
2
(
h
∗
)
(
μ
0
∗
)
(
e
∗
)
2
(
c
∗
)
=
2
(
2
3
π
4
Ω
4
)
/
(
α
2
11
π
5
Ω
4
)
(
2
7
π
4
Ω
3
α
)
2
(
2
π
Ω
2
)
=
α
,
u
19
u
56
(
u
−
27
)
2
u
17
=
1
,
(
r
13
v
5
)
(
1
r
7
)
(
v
6
r
6
)
(
1
v
)
=
1
{\displaystyle {\frac {2(h^{*})}{(\mu _{0}^{*})(e^{*})^{2}(c^{*})}}=2({2^{3}\pi ^{4}\Omega ^{4}})/({\frac {\alpha }{2^{11}\pi ^{5}\Omega ^{4}}})({\frac {2^{7}\pi ^{4}\Omega ^{3}}{\alpha }})^{2}(2\pi \Omega ^{2})=\color {blue}\alpha \color {black},\;{\frac {u^{19}}{u^{56}(u^{-27})^{2}u^{17}}}=1,\;({\frac {r^{13}}{v^{5}}})({\frac {1}{r^{7}}})({\frac {v^{6}}{r^{6}}})({\frac {1}{v}})=1}
Note: The above will apply to any combinations of constants (alien or terrestrial) where scalars = 1 .
M
=
m
P
=
(
1
)
k
;
k
=
m
P
=
.217
672
817
58...
10
−
7
,
u
15
(
k
g
)
{\displaystyle M=m_{P}=(1)k;\;k=m_{P}=.217\;672\;817\;58...\;10^{-7},\;u^{15}\;(kg)}
T
=
t
p
=
π
t
;
t
=
t
p
π
=
.171
585
512
84...10
−
43
,
u
−
30
(
s
)
{\displaystyle T=t_{p}={\pi }t;\;t={\frac {t_{p}}{\pi }}=.171\;585\;512\;84...10^{-43},\;u^{-30}\;(s)}
L
=
l
p
=
2
π
2
Ω
2
l
;
l
=
l
p
2
π
2
Ω
2
=
.203
220
869
48...10
−
36
,
u
−
13
(
m
)
{\displaystyle L=l_{p}={2\pi ^{2}\Omega ^{2}}l;\;l={\frac {l_{p}}{2\pi ^{2}\Omega ^{2}}}=.203\;220\;869\;48...10^{-36},\;u^{-13}\;(m)}
V
=
c
=
2
π
Ω
2
v
;
v
=
c
2
π
Ω
2
=
11
843
707.905...
,
u
17
(
m
/
s
)
{\displaystyle V=c={2\pi \Omega ^{2}}v;\;v={\frac {c}{2\pi \Omega ^{2}}}=11\;843\;707.905...,\;u^{17}\;(m/s)}
A
=
e
/
t
p
=
(
2
7
π
3
Ω
3
α
)
a
=
.126
918
588
59...10
23
,
u
3
(
A
)
{\displaystyle A=e/t_{p}=({\frac {2^{7}\pi ^{3}\Omega ^{3}}{\alpha }})a=.126\;918\;588\;59...10^{23},\;u^{3}\;(A)}
In this example LPVA are derived from MT. The formulas for MT;
M
=
(
1
)
k
,
u
n
i
t
=
u
15
{\displaystyle M=(1)k,\;unit=u^{15}}
T
=
(
π
)
t
,
u
n
i
t
=
u
−
30
{\displaystyle T=(\pi )t,\;unit=u^{-30}}
Replacing scalars pvla with kt
P
=
(
Ω
)
k
12
/
15
t
2
/
15
,
u
n
i
t
=
u
12
/
15
∗
15
−
2
/
15
∗
(
−
30
)
=
16
{\displaystyle P=(\Omega )\;{\frac {k^{12/15}}{t^{2/15}}},\;unit=u^{12/15*15-2/15*(-30)=16}}
V
=
2
π
P
2
M
=
(
2
π
Ω
2
)
k
9
/
15
t
4
/
15
,
u
n
i
t
=
u
9
/
15
∗
15
−
4
/
15
∗
(
−
30
)
=
17
{\displaystyle V={\frac {2\pi P^{2}}{M}}=(2\pi \Omega ^{2})\;{\frac {k^{9/15}}{t^{4/15}}},\;unit=u^{9/15*15-4/15*(-30)=17}}
L
=
T
V
=
(
2
π
2
Ω
2
)
k
9
/
15
t
11
/
15
,
u
n
i
t
=
u
9
/
15
∗
15
+
11
/
15
∗
(
−
30
)
=
−
13
{\displaystyle L=TV=(2\pi ^{2}\Omega ^{2})\;k^{9/15}t^{11/15},\;unit=u^{9/15*15+11/15*(-30)=-13}}
A
=
2
4
V
3
α
P
3
=
(
2
7
π
3
Ω
3
α
)
1
k
3
/
5
t
2
/
5
,
u
n
i
t
=
u
9
/
15
∗
(
−
15
)
+
6
/
15
∗
30
=
3
{\displaystyle A={\frac {2^{4}V^{3}}{\alpha P^{3}}}=\left({\frac {2^{7}\pi ^{3}\Omega ^{3}}{\alpha }}\right)\;{\frac {1}{k^{3/5}t^{2/5}}},\;unit=u^{9/15*(-15)+6/15*30=3}}
In this example MLTA are derived from PV. The formulas for PV;
P
=
(
Ω
)
p
,
u
n
i
t
=
u
16
{\displaystyle P=(\Omega )p,\;unit=u^{16}}
V
=
(
2
π
Ω
2
)
v
,
u
n
i
t
=
u
17
{\displaystyle V=(2\pi \Omega ^{2})v,\;unit=u^{17}}
Replacing scalars klta with pv
M
=
2
π
P
2
V
=
(
1
)
p
2
v
,
u
n
i
t
=
u
16
∗
2
−
17
=
15
{\displaystyle M={\frac {2\pi P^{2}}{V}}=(1){\frac {p^{2}}{v}},\;unit=u^{16*2-17=15}}
T
=
(
π
)
p
9
/
2
v
6
,
u
n
i
t
=
u
16
∗
9
/
2
−
17
∗
6
=
−
30
{\displaystyle T=(\pi ){\frac {p^{9/2}}{v^{6}}},\;unit=u^{16*9/2-17*6=-30}}
L
=
T
V
=
(
2
π
2
Ω
2
)
p
9
/
2
v
5
,
u
n
i
t
=
u
16
∗
9
/
2
−
17
∗
5
=
−
13
{\displaystyle L=TV=(2\pi ^{2}\Omega ^{2}){\frac {p^{9/2}}{v^{5}}},\;unit=u^{16*9/2-17*5=-13}}
A
=
2
4
V
3
α
P
3
=
(
2
7
π
3
Ω
3
α
)
v
3
p
3
,
u
n
i
t
=
u
17
∗
3
−
16
∗
3
=
3
{\displaystyle A={\frac {2^{4}V^{3}}{\alpha P^{3}}}=({\frac {2^{7}\pi ^{3}\Omega ^{3}}{\alpha }}){\frac {v^{3}}{p^{3}}},\;unit=u^{17*3-16*3=3}}
As geometrical objects, the physical constants (G, h, e, me , kB ) can also be defined using the geometrical formulas for (c* , μ0 * , R* ) and solved using the numerical (mean) values for (c, μ0 , R, α ). For example;
(
h
∗
)
3
=
(
2
3
π
4
Ω
4
r
13
u
19
v
5
)
3
=
3
19
π
12
Ω
12
r
39
u
57
v
15
,
θ
=
57
{\displaystyle {(h^{*})}^{3}=(2^{3}\pi ^{4}\Omega ^{4}{\frac {r^{13}u^{19}}{v^{5}}})^{3}={\frac {3^{19}\pi ^{12}\Omega ^{12}r^{39}u^{57}}{v^{15}}},\;\theta =57}
... and ...
2
π
10
(
μ
0
∗
)
3
3
6
(
c
∗
)
5
α
13
(
R
∗
)
2
=
3
19
π
12
Ω
12
r
39
u
57
v
15
,
θ
=
57
{\displaystyle {\frac {2\pi ^{10}{(\mu _{0}^{*})}^{3}}{3^{6}{(c^{*})}^{5}\alpha ^{13}{(R^{*})}^{2}}}={\frac {3^{19}\pi ^{12}\Omega ^{12}r^{39}u^{57}}{v^{15}}},\;\theta =57}
Table 12. Calculated from (R, c, μ0 , α) columns 2, 3, 4 vs CODATA 2014 columns 5, 6
Constant
Formula
Units
Calculated from (R, c, μ0 , α)
CODATA 2014 [ 10]
Units
Planck constant
(
h
∗
)
3
=
2
π
10
μ
0
3
3
6
c
5
α
13
R
2
{\displaystyle {(h^{*})}^{3}={\frac {2\pi ^{10}{\mu _{0}}^{3}}{3^{6}{c}^{5}\alpha ^{13}{R}^{2}}}}
k
g
3
A
6
s
{\displaystyle {\frac {kg^{3}}{A^{6}s}}}
, θ = 57
h* = 6.626 069 134 e-34, θ = 19
h = 6.626 070 040(81) e-34
k
g
m
2
s
{\displaystyle {\frac {kg\;m^{2}}{s}}}
, θ = 19
Gravitational constant
(
G
∗
)
5
=
π
3
μ
0
2
20
3
6
α
11
R
2
{\displaystyle {(G^{*})}^{5}={\frac {\pi ^{3}{\mu _{0}}}{2^{20}3^{6}\alpha ^{11}{R}^{2}}}}
k
g
m
3
A
2
s
2
{\displaystyle {\frac {kg\;m^{3}}{A^{2}s^{2}}}}
, θ = 30
G* = 6.672 497 192 29 e11, θ = 6
G = 6.674 08(31) e-11
m
3
k
g
s
2
{\displaystyle {\frac {m^{3}}{kg\;s^{2}}}}
, θ = 6
Elementary charge
(
e
∗
)
3
=
4
π
5
3
3
c
4
α
8
R
{\displaystyle {(e^{*})}^{3}={\frac {4\pi ^{5}}{3^{3}{c}^{4}\alpha ^{8}{R}}}}
s
4
A
3
{\displaystyle {\frac {s^{4}}{A^{3}}}}
, θ = -81
e* = 1.602 176 511 30 e-19, θ = -27
e = 1.602 176 620 8(98) e-19
A
s
{\displaystyle As}
, θ = -27
Boltzmann constant
(
k
B
∗
)
3
=
π
5
μ
0
3
3
3
2
c
4
α
5
R
{\displaystyle {(k_{B}^{*})}^{3}={\frac {\pi ^{5}{\mu _{0}}^{3}}{3^{3}2{c}^{4}\alpha ^{5}{R}}}}
k
g
3
s
2
A
6
{\displaystyle {\frac {kg^{3}}{s^{2}A^{6}}}}
, θ = 87
kB * = 1.379 510 147 52 e-23, θ = 29
kB = 1.380 648 52(79) e-23
k
g
m
2
s
2
K
{\displaystyle {\frac {kg\;m^{2}}{s^{2}\;K}}}
, θ = 29
Electron mass
(
m
e
∗
)
3
=
16
π
10
R
μ
0
3
3
6
c
8
α
7
{\displaystyle {(m_{e}^{*})}^{3}={\frac {16\pi ^{10}{R}{\mu _{0}}^{3}}{3^{6}{c}^{8}\alpha ^{7}}}}
k
g
3
s
2
m
6
A
6
{\displaystyle {\frac {kg^{3}s^{2}}{m^{6}A^{6}}}}
, θ = 45
me * = 9.109 382 312 56 e-31, θ = 15
me = 9.109 383 56(11) e-31
k
g
{\displaystyle kg}
, θ = 15
Gyromagnetic ratio
(
(
γ
e
∗
)
/
2
π
)
3
=
g
e
3
3
3
c
4
2
8
π
8
α
μ
0
3
R
∞
2
{\displaystyle ({(\gamma _{e}^{*})/2\pi })^{3}={\frac {g_{e}^{3}3^{3}c^{4}}{2^{8}\pi ^{8}\alpha \mu _{0}^{3}R_{\infty }^{2}}}}
m
3
s
2
A
6
k
g
3
{\displaystyle {\frac {m^{3}s^{2}A^{6}}{kg^{3}}}}
, θ = -126
(γe * /2π) = 28024.953 55, θ = -42
γe /2π = 28024.951 64(17)
A
s
k
g
{\displaystyle {\frac {A\;s}{kg}}}
, θ = -42
Planck mass
(
m
P
∗
)
15
=
2
25
π
13
μ
0
6
3
6
c
5
α
16
R
2
{\displaystyle ({m_{P}^{*}})^{15}={\frac {2^{25}\pi ^{13}{\mu _{0}}^{6}}{3^{6}c^{5}\alpha ^{16}R^{2}}}}
k
g
6
m
3
s
7
A
12
{\displaystyle {\frac {kg^{6}m^{3}}{s^{7}A^{12}}}}
, θ = 225
mP * = 0.217 672 817 580 e-7, θ = 15
mP = 0.217 647 0(51) e-7
k
g
{\displaystyle kg}
, θ = 15
Planck length
(
l
p
∗
)
15
=
π
22
μ
0
9
2
35
3
24
α
49
c
35
R
8
{\displaystyle ({l_{p}^{*}})^{15}={\frac {\pi ^{22}{\mu _{0}}^{9}}{2^{35}3^{24}\alpha ^{49}c^{35}R^{8}}}}
k
g
9
s
17
m
18
A
18
{\displaystyle {\frac {kg^{9}s^{17}}{m^{18}A^{18}}}}
, θ = -195
lp * = 0.161 603 660 096 e-34, θ = -13
lp = 0.161 622 9(38) e-34
m
{\displaystyle m}
, θ = -13
↑ Macleod, M.J. "Programming Planck units from a mathematical electron; a Simulation Hypothesis". Eur. Phys. J. Plus 113 : 278. 22 March 2018. doi:10.1140/epjp/i2018-12094-x .
↑ Planck (1899), p. 479.
↑ *Tomilin, K. A., 1999, "Natural Systems of Units: To the Centenary Anniversary of the Planck System ", 287–296.
↑ A Planck scale mathematical universe model
↑ [1] | CODATA, The Committee on Data for Science and Technology | (2014)
↑ Macleod, M.J., "The Programmer God, are we in a computer simulation? ", Chapter 10 Alpha and Omega (2024)
↑ [2] | CODATA, The Committee on Data for Science and Technology | (2014)
↑ [3] | CODATA, The Committee on Data for Science and Technology | (2018)
↑ Macleod, Malcolm J. "Physical constant anomalies suggest a mathematical relationship linking SI units". RG . doi:10.13140/RG.2.2.15874.15041/6 .
↑ [4] | CODATA, The Committee on Data for Science and Technology | (2014)