Siepinski conjectures
Definition
[edit | edit source]For the original Sierpinski problem, it is finding and proving the smallest k such that k×bn+1 is not prime for all integers n ≥ 1 and GCD(k+1, b-1)=1.
Extended definiton
[edit | edit source]Finding and proving the smallest k such that (k×bn+1)/GCD(k+1, b-1) is not prime for all integers n ≥ 1.
Notes
[edit | edit source]All n must be >= 1.
k-values that make a full covering set with all or partial algebraic factors are excluded from the conjectures.
k-values that are a multiple of base (b) and where (k+1)/gcd(k+1,b-1) is not prime are included in the conjectures but excluded from testing.
Such k-values will have the same prime as k / b.
Table
[edit | edit source]Base | Conjectured smallest Sierpinski k | Covering set | k's that make a full covering set with all or partial algebraic factors | Remaining k to find prime
(n testing limit) |
Top 10 k's with largest first primes: k (n)
(sorted by n only) |
Comments |
2 | 78557 | 3, 5, 7, 13, 19, 37, 73 | 21181, 22699, 24737, 55459, 65536, 67607 (k = 65536 at n=8.589G, other k at n=37M) | 10223 (31172165)
19249 (13018586) 27653 (9167433) 28433 (7830457) 33661 (7031232) 5359 (5054502) 4847 (3321063) 54767 (1337287) 69109 (1157446) 65567 (1013803) |
||
3 | 11047 | 2, 5, 7, 13, 73 | 1187, 1801, 3007, 3047, 3307, 5321, 5743, 5893, 6427, 6569, 6575, 7927, 8161, 8227, 8467, 8609, 8863, 8987, 9263, 9449 (all at n=16.3K) | 621 (20820)
3061 (15772) 10243 (9731) 2747 (7097) 10207 (6089) 823 (6087) 10741 (6028) 821 (5512) 5147 (5153) 9721 (5040) |
||
4 | 419 | 3, 5, 7, 13 | none - proven | 186 (10458)
94 (291) 176 (228) 129 (207) 89 (167) 86 (108) 174 (103) 369 (71) 101 (66) 293 (58) |
||
5 | 7 | 2, 3 | none - proven | 4 (2)
3 (2) 6 (1) 5 (1) 2 (1) 1 (1) |
||
6 | 174308 | 7, 13, 31, 37, 97 | 1296, 1814, 9589, 12179, 13215, 14505, 22139, 23864, 29014, 43429, 49874, 50252, 57189, 62614, 67894, 73814, 76441, 80389, 87284, 87289, 87800, 97131, 100899, 112783, 117454, 122704, 124874, 127688, 132614, 135199, 139959, 145984, 151719, 152209, 166753, 168610 (k = 1296 at n=268.4M, k = 1814 at n=200K, other k = 4 mod 5 at n=33.5K, other k at n=4M) | 124125 (2018254)
139413 (1279992) 33706 (910462) 125098 (896696) 31340 (833096) 59506 (780877) 10107 (559967) 113966 (511831) 172257 (349166) 121736 (298935) |
||
7 | 209 | 2, 3, 5, 13, 43 | none - proven (primality certificate for k=141) | 141 (1044)
121 (252) 101 (216) 21 (124) 181 (80) 173 (48) 87 (47) 145 (46) 77 (44) 187 (35) |
||
8 | 47 | 3, 5, 13 | All k = m^3 for all n;
factors to: (m*2^n + 1) * (m^2*4^n - m*2^n + 1) |
none - proven | 31 (20)
46 (4) 40 (4) 37 (4) 28 (4) 16 (4) 13 (4) 45 (3) 38 (3) 36 (3) |
k = 1, 8, and 27 proven composite by full algebraic factors. |
9 | 31 | 2, 5 | none - proven | 26 (6)
21 (4) 24 (3) 17 (3) 28 (2) 23 (2) 16 (2) 11 (2) 10 (2) 7 (2) |
||
10 | 989 | 3, 7, 11, 13 | 100, 269 (k = 100 at n=2.147G, k = 269 at n=100K) | 804 (5470)
342 (338) 485 (230) 912 (215) 815 (190) 378 (188) 494 (135) 640 (120) 737 (117) 603 (107) |
||
11 | 5 | 2, 3 | none - proven | 4 (2)
1 (2) 3 (1) 2 (1) |
||
12 | 521 | 5, 13, 29 | 12 (33.55M) | 404 (714558)
378 (2388) 261 (644) 407 (367) 354 (291) 37 (199) 30 (144) 88 (113) 17 (78) 274 (74) |
||
13 | 15 | 2, 7 | none - proven (for the k=11 prime, factor N-1 is equivalent to factor 13^564-1) | 11 (564)
8 (4) 13 (3) 3 (2) 2 (2) 14 (1) 12 (1) 10 (1) 9 (1) 7 (1) |
||
14 | 4 | 3, 5 | none - proven | 1 (2)
3 (1) 2 (1) |
||
15 | 673029 | 2, 17, 113, 1489 | 225, 341, 343, 641, 965, 1205, 1827, 2263, 2323, 2403, 2445, 2461, 2471, 2531, 2813, 3347, 3625, 3797, 3935, 3959, 4045, 4169, 4355, 4665, 4733, 5169, 5793, 5891, 5983, 6061, 6331, 6553, 6661, 6775, 6849, 7087, 7693, 7711, 7773, 7975, 7979, 8017, 8161, 8181, 8271, 8603, 8881, 9215, 9643, 9767, 9783, 9857 (for k <= 10K) (k = 225 at n=524K, other k at n=1.5K) | 6598 (11715)
6476 (1522) 5529 (1446) 6313 (1276) 7763 (1179) 4787 (1129) 219 (1129) 5975 (1099) 7957 (1082) 5653 (1064) |
||
16 | 38 | 3, 7, 13 | All k=4*q^4 for all n:
let k=4*q^4 and let m=q*2^n; factors to: (2*m^2 + 2m + 1) * (2*m^2 - 2m + 1) |
none - proven (primality certificate for k=23) | 23 (1074)
33 (7) 35 (4) 18 (4) 10 (3) 5 (3) 32 (2) 31 (2) 30 (2) 24 (2) |
k = 4 proven composite by full algebraic factors. |
17 | 31 | 2, 3 | none - proven | 10 (1356)
7 (190) 2 (47) 29 (41) 20 (13) 23 (9) 4 (6) 16 (4) 1 (4) 30 (3) |
||
18 | 398 | 5, 13, 19 | 18 (33.55M) | 122 (292318)
381 (24108) 291 (2415) 37 (457) 362 (258) 123 (236) 183 (171) 363 (163) 209 (79) 318 (78) |
||
19 | 9 | 2, 5 | none - proven | 5 (78)
6 (14) 4 (3) 1 (2) 8 (1) 7 (1) 3 (1) 2 (1) |
||
20 | 8 | 3, 7 | none - proven | 6 (15)
7 (2) 4 (2) 1 (2) 5 (1) 3 (1) 2 (1) |
||
21 | 23 | 2, 11 | none - proven | 12 (10)
21 (3) 19 (2) 11 (2) 8 (2) 3 (2) 22 (1) 20 (1) 18 (1) 17 (1) |
||
22 | 2253 | 5, 23, 97 | 22, 1754, 1772, 1862, 2186, 2232 (k = 22 at n=16.77M, other k at n=16.8K) | 1611 (738988)
1908 (355313) 942 (18359) 740 (18137) 1496 (17480) 461 (16620) 953 (5596) 1793 (4121) 1161 (3720) 346 (3180) |
||
23 | 5 | 2, 3 | none - proven | 4 (342)
1 (4) 3 (3) 2 (1) |
||
24 | 30651 | 5, 7, 13, 73, 79 | 656, 1099, 1816, 1851, 1864, 2164, 2351, 2529, 2586, 3404, 3526, 3609, 4346, 4606, 4894, 5129, 5316, 5324, 5386, 5889, 5974, 7276, 7746, 7844, 8054, 8091, 8161, 9279, 9304, 9701, 9721, 10026, 10156, 10326, 10531, 11346, 12626, 12969, 12991, 13716, 14006, 14604, 15921, 17334, 17819, 17876, 18006, 18204, 18911, 19031, 19094, 20219, 20676, 20731, 21459, 21849, 22289, 22356, 22479, 23844, 23874, 24784, 25964, 25966, 26279, 27344, 29091, 29349, 29464, 29566, 29601 (k = 22 mod 23 at n=11.3K, other k at n=400K) | 13984 (397259)
3846 (383526) 23981 (360062) 8369 (359371) 3706 (353908) 12799 (353083) 29009 (338099) 28099 (332519) 21526 (329368) 26804 (266195) |
||
25 | 79 | 2, 13 | 71 (10K) | 61 (3104)
40 (518) 59 (48) 77 (27) 68 (15) 47 (9) 12 (9) 51 (7) 66 (6) 57 (5) |
||
26 | 221 | 3, 7, 19, 37 | 65, 155 (both at n=1M) | 32 (318071)
217 (11454) 95 (1683) 178 (1154) 138 (827) 157 (308) 175 (276) 211 (98) 149 (87) 197 (71) |
||
27 | 13 | 2, 7 | All k = m^3 for all n;
factors to: (m*3^n + 1) * (m^2*9^n - m*3^n + 1) |
none - proven | 9 (10)
7 (3) 12 (2) 5 (2) 2 (2) 11 (1) 10 (1) 6 (1) 4 (1) 3 (1) |
k = 1 and 8 proven composite by full algebraic factors. |
28 | 4554 | 5, 29, 157 | 871, 3104, 4552 (k = 3104 at n=25.5K, k = 871 and 4552 at n=1M) | 3394 (427262)
4233 (331135) 2377 (104621) 146 (47316) 1291 (22811) 2203 (13911) 1565 (8607) 1797 (5681) 1043 (5459) 2467 (4956) |
||
29 | 4 | 3, 5 | none - proven | 3 (2)
1 (2) 2 (1) |
||
30 | 867 | 7, 13, 19, 31 | 278, 588 (both at n=1M) | 699 (11837)
242 (5064) 659 (4936) 311 (1760) 559 (1654) 557 (1463) 740 (1135) 12 (1023) 83 (644) 293 (361) |
||
31 | 239 | 2, 3, 7, 19 | 1, 51, 73, 77, 107, 117, 149, 181, 209 (k = 1 at n=524K, k = 51 at n=37K, other k at n=6K) | 43 (21053)
189 (5570) 191 (1553) 5 (1026) 113 (178) 121 (118) 145 (78) 37 (64) 33 (62) 205 (60) |
||
32 | 10 | 3, 11 | All k = m^5 for all n;
factors to: (m*2^n + 1) * (m^4*16^n - m^3*8^n + m^2*4^n - m*2^n + 1) |
4 (1.717G) | 9 (13)
7 (4) 5 (3) 2 (3) 8 (1) 6 (1) 3 (1) |
k = 1 proven composite by full algebraic factors. |
33 | 511 | 2, 17 | 67, 203 (both at n=12K) | 36 (23615)
407 (10961) 154 (6846) 319 (5043) 288 (4583) 418 (780) 11 (593) 305 (561) 251 (495) 63 (347) |
||
34 | 6 | 5, 7 | none - proven | 5 (12)
1 (4) 4 (1) 3 (1) 2 (1) |
||
35 | 5 | 2, 3 | none - proven | 4 (42)
1 (2) 3 (1) 2 (1) |
||
36 | 1886 | 13, 31, 37, 43 | 1296, 1814 (k = 1296 at n=134.2M, k = 1814 at n=100K) | 960 (1571)
716 (1554) 526 (698) 1000 (542) 223 (480) 1096 (407) 1570 (352) 667 (302) 1115 (280) 1669 (240) |
||
37 | 39 | 2, 19 | 37 (524K) | 19 (5310)
18 (461) 17 (12) 36 (9) 35 (6) 33 (6) 3 (6) 31 (5) 32 (4) 11 (4) |
||
38 | 14 | 3, 13 | 1 (16.77M) | 2 (2729)
9 (21) 4 (10) 8 (7) 10 (4) 7 (4) 3 (3) 13 (2) 12 (1) 11 (1) |
||
39 | 9 | 2, 5 | none - proven | 6 (2)
5 (2) 1 (2) 8 (1) 7 (1) 4 (1) 3 (1) 2 (1) |
||
40 | 47723 | 3, 7, 41, 223 | 1169, 1229, 1415, 1600, 2215, 2294, 2338, 2543, 2789, 2951, 2957, 3050, 3281, 3689, 3812, 3935, 4224, 4388, 4468, 4565, 4675, 4742, 4820, 5003, 5042, 5126, 5372, 5944, 6689, 7051, 7092, 7586, 7934, 8255, 8283, 8362, 8363, 8792, 8978, 9090, 9101, 9221, 9224, 9731, 9964, 10187, 10661, 10762, 11112, 11195, 11438, 11645, 11684, 12422, 12668, 12955, 13025, 13193, 13283, 13406, 13445, 13970, 15104, 15263, 15284, 15374, 15579, 15581, 15989, 16235, 16319, 16445, 16481, 16768, 16850, 17465, 17477, 17957, 18146, 18164, 18285, 18365, 18572, 18692, 18695, 18818, 19202, 19213, 19280, 19394, 19884, 20124, 20198, 20267, 20318, 20870, 20894, 20951, 20963, 21032, 21196, 21407, 21895, 22671, 22961, 23123, 23201, 23371, 23741, 23984, 24221, 24437, 24476, 24594, 25667, 26198, 26387, 26815, 26855, 27182, 27389, 27430, 28332, 28496, 28578, 28619, 29045, 29108, 29150, 29291, 29603, 29642, 30236, 30269, 30503, 30505, 30751, 31079, 31088, 31220, 31226, 31489, 31538, 31770, 31928, 32512, 32555, 32637, 32678, 32717, 33065, 33211, 33344, 33662, 33764, 33785, 33929, 34029, 34646, 34709, 34808, 35333, 35375, 35382, 35384, 35417, 35507, 35546, 35552, 35822, 35828, 35837, 35894, 35999, 36101, 36185, 36368, 36824, 37229, 37268, 37577, 37703, 38324, 38828, 38951, 39115, 39230, 39722, 40667, 41411, 41450, 41479, 41696, 41819, 42106, 43174, 43295, 43787, 43830, 43892, 43994, 44238, 44279, 44546, 44732, 44894, 46370, 46698, 46709, 46925, 47272, 47276, 47559, 47684 (all at n=5K) | 14555 (4988)
39119 (4945) 21026 (4919) 20402 (4907) 39525 (4904) 8624 (4892) 15417 (4860) 25501 (4717) 27948 (4710) 5477 (4683) |
||
41 | 8 | 3, 7 | none - proven | 1 (16)
4 (6) 6 (3) 7 (2) 5 (1) 3 (1) 2 (1) |
||
42 | 13372 | 5, 43, 353 | 42, 988, 1117, 1421, 3226, 4127, 5503, 6707, 8298, 8601, 9074, 11093, 11717, 11738, 11912, 12256, 13283 (k = 42 at n=16.77M, k = 13283 at n=10K, other k at n=800K) | 8343 (560662)
12001 (312245) 12042 (277646) 4643 (143933) 4297 (142044) 4731 (141968) 3897 (136780) 10009 (132629) 2794 (126595) 8300 (116404) |
||
43 | 21 | 2, 11 | none - proven (for the k=13 prime, factor N-1 is equivalent to factor 43^580-1) (primality certificate for k=9) | 13 (580)
9 (498) 3 (171) 5 (38) 17 (34) 15 (23) 1 (8) 18 (3) 16 (3) 14 (2) |
||
44 | 4 | 3, 5 | none - proven | 1 (16)
3 (9) 2 (1) |
||
45 | 47 | 2, 23 | none - proven | 24 (18522)
15 (55) 42 (36) 3 (28) 35 (22) 8 (8) 30 (5) 38 (3) 23 (3) 20 (3) |
||
46 | 881 | 3, 7, 103 | 563, 845 (both at n=35K) | 283 (21198)
17 (4920) 140 (2105) 619 (2005) 278 (1788) 347 (1287) 729 (1006) 95 (446) 229 (443) 871 (405) |
||
47 | 5 | 2, 3 | none - proven | 2 (175)
1 (8) 4 (2) 3 (1) |
||
48 | 1219 | 7, 13, 61, 181 | 36, 62, 153, 561, 622, 1114, 1168 (all at n=500K) | 937 (309725)
701 (284564) 1077 (216501) 1086 (136352) 1121 (133656) 29 (133042) 841 (84732) 1099 (81106) 359 (35671) 1028 (22619) |
||
49 | 31 | 2, 5 | none - proven | 24 (165)
21 (62) 22 (39) 11 (26) 16 (10) 29 (9) 9 (3) 26 (2) 20 (2) 15 (2) |
||
50 | 16 | 3, 17 | 1 (16.77M) | 7 (516)
4 (10) 11 (9) 10 (4) 13 (2) 9 (2) 15 (1) 14 (1) 12 (1) 8 (1) |
||
51 | 25 | 2, 13 | none - proven | 5 (6)
24 (5) 21 (4) 13 (4) 10 (3) 3 (3) 17 (2) 16 (2) 14 (2) 9 (2) |
||
52 | 28674 | 5, 53, 541 | 52, 113, 158, 266, 311, 317, 419, 584, 674, 743, 863, 902, 973, 1043, 1292, 1376, 1483, 1502, 1538, 1591, 1658, 1727, 1808, 1907, 2174, 2384, 2386, 2570, 2624, 2711, 2813, 2978, 3181, 3232, 3254, 3418, 3671, 3746, 4133, 4135, 4241, 4292, 4706, 4901, 4928, 4967, 5281, 5282, 5405, 5570, 5573, 5619, 5624, 5693, 5711, 5776, 5882, 5988, 6011, 6125, 6147, 6149, 6239, 6536, 6572, 6687, 6770, 6891, 7058, 7089, 7147, 7207, 7262, 7283, 7313, 7397, 7400, 7577, 7580, 7737, 7739, 7998, 8054, 8638, 8681, 8693, 8990, 9083, 9134, 9243, 9329, 9356, 9421, 9433, 9437, 9602, 9737, 9848, 9943, 9977, 10004, 10013, 10188, 10246, 10328, 10451, 10487, 10493, 10499, 10548, 10586, 10601, 10641, 10652, 10667, 10679, 10739, 10916, 10919, 10999, 11078, 11146, 11516, 11553, 11684, 11714, 11747, 11771, 11798, 11818, 12191, 12197, 12461, 12471, 12533, 12721, 12779, 12918, 13043, 13171, 13251, 13277, 13514, 13673, 13697, 13784, 13799, 13842, 13952, 14132, 14256, 14849, 14888, 15110, 15157, 15282, 15422, 15424, 15474, 15636, 15637, 15659, 15901, 16058, 16133, 16273, 16535, 16559, 16738, 16749, 16802, 16853, 16961, 17012, 17027, 17054, 17120, 17277, 17279, 17383, 17491, 17712, 17723, 17809, 17996, 18072, 18328, 18449, 18458, 18526, 18602, 18632, 18797, 18816, 18951, 19043, 19081, 19121, 19157, 19178, 19241, 19319, 19352, 19397, 19403, 19451, 19493, 19556, 19646, 19721, 19751, 19768, 19959, 19980, 19982, 20192, 20351, 20459, 20475, 20526, 20722, 20840, 20897, 20936, 20975, 21246, 21272, 21347, 21353, 21359, 21517, 21851, 21902, 22055, 22169, 22332, 22418, 22430, 22526, 22701, 22709, 22719, 22739, 22791, 23062, 23531, 23558, 23586, 23612, 23663, 23705, 23743, 23774, 23844, 23871, 23902, 23987, 24257, 24273, 24328, 24347, 24452, 24456, 24464, 24547, 24563, 24697, 24866, 24911, 25227, 25229, 25236, 25439, 25492, 25494, 25653, 25704, 25865, 25943, 26078, 26261, 26287, 26498, 26658, 26660, 26744, 26771, 26858, 26923, 26966, 27082, 27122, 27327, 27527, 27572, 27623, 27877, 28142, 28193, 28198, 28462, 28493, 28661 (all at n=5K) | 14129 (4891)
19634 (4877) 8132 (4875) 42 (4822) 3827 (4716) 15656 (4640) 6044 (4635) 21167 (4604) 10861 (4597) 20987 (4571) |
||
53 | 7 | 2, 3 | 4 (2.075M) | 6 (143)
5 (9) 1 (8) 3 (4) 2 (1) |
||
54 | 21 | 5, 11 | none - proven | 19 (103)
16 (30) 13 (7) 12 (4) 4 (3) 20 (2) 18 (2) 11 (2) 6 (2) 1 (2) |
||
55 | 13 | 2, 7 | 1 (524K) | 10 (9)
9 (2) 8 (2) 5 (2) 4 (2) 12 (1) 11 (1) 7 (1) 6 (1) 3 (1) |
||
56 | 20 | 3, 19 | none - proven | 4 (78)
19 (70) 13 (6) 7 (6) 3 (5) 16 (2) 15 (2) 10 (2) 1 (2) 18 (1) |
||
57 | 47 | 2, 5, 13 | none - proven | 14 (14955)
39 (74) 27 (44) 46 (20) 30 (14) 31 (7) 38 (5) 25 (5) 16 (5) 6 (5) |
||
58 | 488 | 3, 7, 163 | 58, 122, 176, 222, 431, 437, 461 (k = 58 at n=16.77M, k = 222 at n=125K, other k at n=14.9K) | 178 (25524)
297 (11508) 266 (9040) 241 (1964) 296 (1892) 393 (1831) 106 (1795) 228 (1603) 20 (1340) 392 (1222) |
||
59 | 4 | 3, 5 | none - proven | 2 (3)
1 (2) 3 (1) |
||
60 | 16957 | 13, 61, 277 | 60, 853, 1646, 2075, 4025, 4406, 4441, 5064, 6772, 7262, 7931, 10226, 11406, 12323, 13785, 14958, 15007, 15452, 15676, 16050 (k = 60 at n=16.77M, other k at n=500K) | 14066 (324990)
16014 (227010) 5767 (201439) 12927 (191870) 11441 (180105) 8923 (109088) 13846 (90979) 2497 (88149) 10405 (77541) 6465 (37209) |
||
61 | 63 | 2, 31 | none - proven (primality certificate for k=62, primality certificate for k=43, primality certificate for k=23) | 62 (3698)
43 (2788) 23 (1659) 10 (165) 19 (70) 32 (18) 25 (16) 36 (12) 57 (11) 26 (11) |
||
62 | 8 | 3, 7 | 1 (16.77M) | 7 (308)
2 (43) 3 (12) 4 (2) 6 (1) 5 (1) |
||
63 | 1589 | 2, 5, 397 | 1, 83, 101, 103, 113, 143, 185, 223, 237, 267, 307, 309, 335, 343, 367, 381, 391, 411, 425, 467, 471, 487, 509, 549, 587, 603, 637, 643, 645, 673, 677, 681, 687, 689, 701, 789, 807, 821, 825, 827, 881, 903, 937, 951, 963, 983, 989, 1021, 1043, 1047, 1063, 1067, 1103, 1263, 1267, 1283, 1321, 1341, 1401, 1461, 1463, 1467, 1481, 1523, 1553, 1563, 1581 (k = 1 at n=524K, other k at n=2K) | 1108 (12351)
888 (2698) 9 (2162) 1174 (1989) 1201 (1904) 1367 (1861) 1189 (1846) 1027 (1693) 581 (1596) 1433 (1554) |
||
64 | 14 | 5, 13 | All k = m^3 for all n;
factors to: (m*4^n + 1) * (m^2*16^n - m*4^n + 1) |
none - proven (primality certificate for k=11) | 11 (3222)
13 (2) 6 (2) 12 (1) 10 (1) 9 (1) 7 (1) 5 (1) 4 (1) 3 (1) |
k = 1 and 8 proven composite by full algebraic factors. |
65 | 10 | 3, 11 | none - proven | 6 (5)
7 (2) 4 (2) 3 (2) 1 (2) 9 (1) 8 (1) 5 (1) 2 (1) |
||
66 | 21314443 | 7, 17, 37, 67, 73, 4357 | 269, 470, 537, 1198, 1408, 1449, 2076, 2257, 2464, 2605, 2614, 2624, 2815, 3284, 3899, 4153, 4155, 4175, 4356, 4689, 4769, 4820, 4883, 5024, 5200, 5334, 5361, 5442, 5765, 5805, 5857, 6031, 6289, 6634, 6835, 7216, 7374, 7818, 8024, 8304, 9312 (for k <= 10K) (all at n=1K) | 1511 (999)
1674 (863) 5269 (831) 4490 (774) 6969 (764) 2014 (758) 6105 (658) 7285 (645) 3149 (627) 7669 (616) |
||
67 | 26 | 3, 7, 31 | 1, 17, 21 (k = 1 at n=524K, other k at n=10K) | 6 (4532)
11 (209) 12 (135) 7 (135) 19 (21) 5 (6) 2 (6) 22 (3) 16 (3) 25 (2) |
||
68 | 22 | 3, 23 | 1, 17 (k = 1 at n=16.77M, k = 17 at n=1M) | 12 (656921)
11 (3947) 8 (319) 16 (36) 5 (29) 13 (26) 19 (6) 10 (6) 4 (6) 18 (2) |
||
69 | 6 | 5, 7 | none - proven | 3 (2)
1 (2) 5 (1) 4 (1) 2 (1) |
||
70 | 11077 | 13, 29, 71 | 70, 89, 178, 212, 283, 285, 434, 545, 581, 629, 881, 1300, 1373, 1436, 1490, 1559, 1565, 1694, 1871, 1916, 1946, 1955, 2129, 2176, 2351, 2354, 2379, 2419, 2705, 2756, 3154, 3317, 3329, 3336, 3362, 3407, 3452, 3530, 3647, 3762, 3764, 3929, 3944, 4025, 4061, 4119, 4166, 4188, 4193, 4250, 4331, 4351, 4454, 4913, 5145, 5169, 5204, 5231, 5348, 5429, 5540, 5594, 5608, 5609, 5798, 5857, 5894, 5953, 5975, 6133, 6167, 6218, 6410, 6518, 6530, 6582, 6743, 7145, 7325, 7365, 7552, 7578, 7691, 7736, 7811, 7907, 7974, 7994, 8003, 8015, 8045, 8153, 8159, 8201, 8234, 8306, 8348, 8351, 8377, 8406, 8423, 8465, 8477, 8637, 8907, 8945, 9231, 9268, 9323, 9428, 9471, 9515, 9586, 9693, 9712, 9751, 9758, 10009, 10051, 10089, 10193, 10271, 10291, 10399, 10438, 10544, 10574, 10718, 10997, 11003 (all at n=1K) | 3479 (998)
7345 (994) 10793 (976) 4155 (970) 1040 (965) 4343 (936) 2471 (936) 5578 (932) 4208 (926) 2877 (907) |
||
71 | 5 | 2, 3 | none - proven | 4 (22)
2 (3) 1 (2) 3 (1) |
||
72 | 731 | 5, 61, 73 | 72 (16.77M) | 493 (480933)
647 (60536) 489 (20201) 559 (9626) 395 (8171) 444 (6071) 499 (2998) 292 (2779) 649 (2658) 521 (1208) |
||
73 | 47 | 2, 5, 13 | none - proven (with probable primes that have not been certified: k = 14) (primality certificate for k=21, primality certificate for k=39) | 14 (21369)
21 (1531) 39 (350) 16 (40) 8 (28) 13 (23) 25 (10) 17 (9) 36 (7) 38 (6) |
||
74 | 4 | 3, 5 | none - proven | 1 (2)
3 (1) 2 (1) |
||
75 | 37 | 2, 19 | none - proven (primality certificate for k=11) | 11 (3071)
28 (129) 17 (128) 18 (57) 12 (57) 5 (48) 1 (32) 33 (18) 35 (11) 9 (6) |
||
76 | 34 | 7, 11 | none - proven | 29 (84)
22 (16) 1 (16) 23 (12) 19 (6) 15 (6) 33 (4) 8 (4) 20 (3) 13 (3) |
||
77 | 7 | 2, 3 | 1 (524K) | 4 (6098)
2 (3) 3 (2) 6 (1) 5 (1) |
||
78 | 96144 | 5, 79, 1217 | 78, 1143, 2371, 3317, 3513, 4346, 4820, 4897, 5136, 5294, 5531, 5686, 5862, 6103, 6353, 6859, 7188, 7594, 8373, 9558, 9652, 9694, 9701, 9953, 10348, 10723, 11003, 11219, 12244, 12251, 13353, 13508, 13768, 14566, 14832, 15126, 15777, 15899, 16071, 16273, 16591, 17588, 17761, 18248, 18776, 19501, 19828, 19931, 20146, 20206, 20754, 21171, 21284, 21453, 21489, 21884, 21972, 22279, 22662, 23337, 23341, 23953, 24254, 24672, 24877, 24886, 24912, 25044, 25171, 25199, 26069, 26212, 26515, 26592, 27059, 27124, 27537, 27663, 28202, 28423, 28518, 28597, 29303, 29322, 29497, 29784, 30572, 30967, 31030, 32073, 32633, 33094, 33193, 33318, 33732, 34208, 34522, 34528, 34712, 34998, 35244, 35433, 35628, 35709, 36014, 36497, 37068, 37456, 37773, 37795, 37842, 38009, 38393, 38401, 39724, 40361, 40844, 41239, 41271, 41634, 42671, 43214, 43493, 43609, 43693, 43770, 44428, 44631, 45268, 45345, 45352, 45582, 45584, 45779, 46213, 46374, 46927, 47053, 48012, 48113, 48173, 48187, 48824, 49139, 49149, 49482, 50441, 51148, 51428, 51501, 51981, 52238, 52541, 52744, 53503, 53703, 53721, 54263, 54273, 54438, 54669, 54942, 55026, 56091, 56199, 57276, 57303, 57694, 58409, 58582, 59373, 59611, 60513, 60906, 60987, 61417, 61648, 61777, 62033, 62567, 62663, 62964, 63596, 63666, 64542, 64712, 65253, 65727, 65887, 67070, 67591, 67941, 68011, 68053, 68697, 69173, 70943, 70982, 71168, 71203, 71609, 71730, 71952, 72225, 73943, 74051, 74249, 74367, 74733, 75019, 75492, 76394, 77182, 77209, 77573, 77972, 78826, 79001, 79127, 79749, 79949, 80046, 80263, 80343, 80737, 80739, 80897, 81731, 81864, 82556, 83419, 83502, 83978, 84013, 84818, 85133, 85714, 86267, 86281, 86371, 86503, 86687, 87016, 87156, 87328, 87559, 87614, 87691, 87821, 88321, 88479, 88619, 89039, 89214, 89352, 89429, 89836, 90481, 91009, 91125, 91496, 92826, 93587, 93624, 93722, 93774, 93873, 93981, 94114, 94758, 95354, 95670 (k = 78 at n=16.77M, k = 6 mod 7 and k = 10 mod 11 at n=1K, other k at n=100K) | 31738 (98568)
83107 (95785) 25281 (83932) 22344 (83678) 12325 (83516) 78211 (82952) 74928 (80731) 34346 (78373) 60908 (70199) 46424 (66623) |
||
79 | 9 | 2, 5 | none - proven (for the k=3 prime, factor N+1 is equivalent to factor 79^875+1) (for the k=5 prime, factor N-1 is equivalent to factor 79^162-1) | 3 (875)
5 (162) 6 (2) 1 (2) 8 (1) 7 (1) 4 (1) 2 (1) |
||
80 | 1039 | 3, 7, 13, 43, 173 | 86, 92, 166, 370, 393, 472, 556, 623, 692, 778, 818, 947, 968 (k = 947 at n=4K, other k at n=500K) | 628 (491322)
295 (404886) 326 (398799) 188 (142291) 433 (121106) 770 (107149) 857 (106007) 787 (48156) 1024 (46306) 233 (36917) |
||
81 | 575 | 2, 41 | All k=4*q^4 for all n:
let k=4*q^4 and let m=q*3^n; factors to: (2*m^2 + 2m + 1) * (2*m^2 - 2m + 1) |
239, 335, 514 (all at n=5K) | 558 (51992)
311 (7834) 75 (3309) 569 (2937) 439 (2097) 284 (1455) 41 (1223) 389 (871) 34 (734) 317 (518) |
k = 4, 64, and 324 proven composite by full algebraic factors. |
82 | 19587 | 5, 7, 13, 37, 83 | 74, 122, 167, 470, 839, 848, 1121, 1226, 1251, 1319, 1327, 1376, 1427, 1433, 1493, 1514, 1559, 1716, 1733, 1798, 1908, 2024, 2066, 2159, 2251, 2339, 2352, 2461, 2491, 2708, 2939, 2989, 3041, 3236, 3239, 3332, 3377, 3474, 3572, 3593, 3641, 3656, 3746, 3896, 3962, 4133, 4142, 4151, 4232, 4379, 4384, 4454, 4542, 4898, 5064, 5251, 5279, 5396, 5477, 5483, 5516, 5612, 5703, 5721, 5747, 5867, 5893, 5975, 6059, 6226, 6497, 6641, 6761, 6764, 6912, 6953, 7127, 7160, 7201, 7266, 7541, 7718, 7856, 7884, 7969, 7982, 8135, 8301, 8384, 8467, 8532, 8609, 8657, 8742, 8797, 8909, 9038, 9169, 9335, 9380, 9419, 9437, 9461, 9476, 9638, 9776, 9788, 9812, 9836, 9842, 9851, 9911, 9941, 9954, 10049, 10127, 10154, 10304, 10448, 10553, 10577, 10586, 10802, 10958, 11080, 11087, 11177, 11408, 11612, 11621, 11666, 11702, 11704, 11761, 11783, 11834, 11957, 11963, 11984, 12008, 12036, 12119, 12347, 12451, 12491, 12532, 12548, 12554, 12638, 12737, 12744, 12856, 12866, 12938, 12947, 12949, 13121, 13246, 13268, 13283, 13343, 13607, 13613, 13777, 14192, 14473, 14609, 14621, 14639, 14676, 14681, 14692, 14873, 14941, 14984, 15032, 15122, 15146, 15203, 15271, 15296, 15356, 15551, 15854, 15869, 15937, 15953, 16088, 16133, 16267, 16269, 16423, 16433, 16442, 16502, 16601, 16682, 16733, 16811, 16847, 17029, 17078, 17112, 17174, 17177, 17369, 17393, 17798, 17813, 17846, 17921, 18332, 18342, 18457, 18548, 18566, 18626, 18944, 18965, 18971, 19061, 19181, 19421 (k = 2 mod 3 at n=1K, other k at n=100K) | 5652 (96054)
7288 (94205) 5101 (88245) 5977 (85004) 9676 (84109) 17692 (82887) 17091 (82407) 19134 (82154) 18168 (71000) 19098 (69654) |
||
83 | 5 | 2, 3 | 1, 3 (k = 1 at n=524K, k = 3 at n=8K) | 4 (5870)
2 (1) |
||
84 | 16 | 5, 17 | none - proven | 14 (47)
15 (6) 10 (5) 2 (4) 11 (2) 7 (2) 6 (2) 3 (2) 1 (2) 13 (1) |
||
85 | 87 | 2, 43 | none - proven | 70 (1586)
65 (125) 43 (62) 20 (57) 68 (12) 37 (12) 38 (11) 73 (7) 34 (7) 83 (6) |
||
86 | 28 | 3, 29 | 1, 8 (k = 1 at n=16.77M, k = 8 at n=1M) | 6 (40)
24 (23) 17 (17) 7 (12) 19 (6) 4 (6) 27 (4) 25 (2) 22 (2) 21 (2) |
||
87 | 21 | 2, 11 | none - proven | 12 (1214)
8 (112) 17 (16) 1 (16) 7 (7) 5 (6) 16 (4) 10 (3) 14 (2) 13 (2) |
||
88 | 26 | 3, 7, 19, 31 | none - proven (primality certificate for k=8) | 8 (1094)
14 (83) 12 (9) 6 (7) 3 (4) 23 (3) 21 (3) 11 (3) 25 (2) 22 (2) |
||
89 | 4 | 3, 5 | 1 (524K) | 3 (1)
2 (1) |
||
90 | 27 | 7, 13 | none - proven | 14 (14)
8 (14) 22 (6) 19 (6) 5 (6) 16 (4) 12 (3) 23 (2) 21 (2) 15 (2) |
||
91 | 45 | 2, 23 | 1 (524K) | 33 (52)
35 (45) 9 (36) 7 (17) 37 (12) 36 (9) 29 (8) 43 (7) 41 (6) 16 (6) |
||
92 | 32 | 3, 31 | 1 (16.77M) | 31 (416)
25 (308) 8 (109) 17 (59) 29 (47) 24 (38) 10 (24) 16 (12) 7 (6) 23 (5) |
||
93 | 95 | 2, 47 | 62, 67, 87, 93 (k = 62 at n=100K, k = 93 and n=524K, other k at n=8K) | 19 (4362)
36 (3936) 43 (2994) 31 (527) 6 (520) 3 (156) 79 (69) 71 (41) 63 (31) 18 (24) |
||
94 | 39 | 5, 19 | none - proven (primality certificate for k=17) | 17 (581)
9 (263) 11 (90) 31 (54) 2 (51) 16 (26) 23 (22) 34 (19) 30 (12) 38 (11) |
||
95 | 5 | 2, 3 | none - proven | 3 (9)
4 (6) 1 (2) 2 (1) |
||
96 | 68869 | 13, 97, 709 | 194, 939, 969, 994, 1169, 1177, 1262, 1514, 1844, 2146, 2424, 2545, 2868, 2952, 3028, 3364, 3624, 3699, 3784, 4019, 4164, 4239, 4549, 5140, 5239, 5262, 5764, 5959, 6009, 6074, 6304, 6389, 6569, 6668, 6671, 6769, 6882, 6934, 7132, 7246, 7312, 7539, 7569, 8009, 8069, 8226, 8634, 8796, 9020, 9064, 9309, 9489, 9589, 9619, 9799, 10089, 10139, 10574, 10669, 10739, 10844, 10849, 10939, 11154, 11159, 11361, 11549, 11634, 11659, 11738, 11974, 12029, 12054, 12417, 12706, 12999, 13044, 13519, 13773, 13899, 14169, 14279, 14299, 14494, 14646, 15194, 15208, 15228, 15448, 16073, 16279, 16349, 16799, 17009, 17029, 17264, 17362, 17517, 17564, 17909, 18189, 18231, 18254, 18916, 19109, 19254, 19289, 19304, 19683, 19884, 19934, 20064, 20324, 20369, 20494, 20584, 20599, 20733, 21194, 21234, 21679, 22309, 22419, 22569, 22604, 22699, 22999, 23174, 23629, 24015, 24049, 24259, 24490, 24724, 25459, 25575, 25829, 25995, 26229, 26379, 26424, 26577, 26846, 26899, 26941, 27219, 27299, 27334, 27514, 27644, 27682, 27849, 28939, 29039, 29278, 29411, 29574, 30360, 30459, 30484, 30509, 30689, 30779, 31461, 31621, 31979, 32138, 32239, 32300, 32319, 32369, 32384, 32432, 32609, 32664, 32714, 33034, 33175, 33229, 34119, 34267, 34469, 34744, 35071, 35296, 35309, 35404, 35794, 36304, 36824, 36834, 37129, 37829, 38134, 38219, 38546, 38609, 38739, 39164, 39187, 39309, 39386, 39719, 39777, 39983, 40014, 40724, 41339, 41614, 41674, 41709, 41779, 41806, 41905, 42004, 42179, 42199, 42291, 42374, 42394, 42444, 42629, 42901, 42954, 42979, 43194, 43389, 43494, 43739, 43909, 43914, 44136, 44384, 44539, 44611, 44634, 45009, 45589, 45774, 46134, 46214, 46344, 46409, 46444, 46658, 46684, 47139, 47143, 47164, 47238, 47259, 47344, 47644, 48010, 48214, 48307, 48404, 48479, 48504, 48582, 48744, 48749, 48914, 49017, 49249, 49859, 50079, 50194, 50224, 50387, 50549, 50709, 50929, 51099, 51159, 51399, 51414, 51797, 51827, 52019, 52034, 52209, 53004, 53079, 53465, 53519, 53624, 54016, 54254, 54509, 54994, 55049, 55774, 55959, 56044, 56229, 56719, 56854, 56919, 56939, 57037, 57114, 57264, 57520, 57524, 57968, 58199, 58215, 58356, 58644, 59189, 59519, 59654, 59684, 59799, 59945, 59947, 60014, 60194, 60269, 60464, 60624, 60917, 61014, 61034, 61384, 61524, 61699, 61773, 62024, 62774, 62884, 62954, 63029, 63439, 63504, 63509, 63799, 63809, 63939, 64454, 64484, 64644, 64700, 64789, 64871, 64982, 65019, 65089, 65164, 65229, 65239, 65379, 65399, 65573, 65606, 65668, 65749, 65864, 66039, 66096, 66119, 66349, 66559, 66664, 66734, 66749, 66929, 67159, 67174, 67373, 67976, 68004, 68169, 68192, 68274, 68339, 68384, 68444, 68532, 68752, 68774 (k = 4 mod 5 and k = 18 mod 19 at n=1K, other k at n=100K) | 14825 (91707)
64312 (89580) 59132 (85620) 41452 (85565) 32762 (81344) 21533 (81235) 26773 (74392) 13872 (73620) 4461 (73443) 16780 (72065) |
||
97 | 127 | 2, 7 | 1, 27, 43, 62, 83, 116, 120, 123 (k = 1 at n=524K, k = 120 at n=100K, other k at n=2K) | 64 (7474)
22 (2182) 122 (660) 68 (593) 26 (224) 87 (167) 24 (158) 113 (104) 41 (89) 17 (64) |
||
98 | 10 | 3, 11 | 1 (16.77M) | 4 (294)
8 (119) 6 (32) 7 (8) 3 (2) 9 (1) 5 (1) 2 (1) |
||
99 | 9 | 2, 5 | 1 (524K) | 5 (14)
8 (10) 6 (6) 7 (1) 4 (1) 3 (1) 2 (1) |
||
100 | 62 | 3, 7, 13 | none - proven | 31 (168)
38 (29) 59 (24) 34 (13) 36 (8) 17 (6) 52 (5) 3 (5) 60 (4) 46 (4) |
||
101 | 7 | 2, 3 | none - proven | 2 (192275)
3 (22) 5 (3) 4 (2) 1 (2) 6 (1) |
||
102 | 293 | 7, 19, 79 | 122, 178, 236 (all at n=360K) | 46 (50451)
278 (10941) 94 (6421) 12 (2739) 73 (2040) 131 (1112) 202 (610) 56 (499) 48 (305) 271 (300) |
||
103 | 25 | 2, 13 | 7 (8K) | 13 (7010)
20 (476) 11 (81) 23 (51) 14 (34) 21 (16) 5 (16) 2 (8) 8 (7) 1 (4) |
||
104 | 4 | 3, 5 | 1 (16.77M) | 2 (1233)
3 (1) |
||
105 | 319 | 2, 53 | none - proven (primality certificate for k=191, primality certificate for k=39, primality certificate for k=183) | 191 (5045)
36 (675) 39 (348) 264 (275) 183 (210) 150 (193) 80 (177) 164 (146) 167 (140) 204 (105) |
||
106 | 2387 | 3, 19, 199 | 69, 110, 164, 259, 412, 449, 635, 748, 812, 929, 1088, 1190, 1429, 1511, 1607, 1628, 1823, 1925, 1985, 2018, 2075, 2177, 2189, 2216, 2279 (all at n=2K) | 1559 (1975)
436 (1949) 679 (1818) 198 (1699) 2119 (1685) 1160 (1564) 2036 (1312) 887 (1307) 1703 (1305) 1835 (1303) |
||
107 | 5 | 2, 3 | 1 (524K) | 4 (32586)
3 (165) 2 (3) |
||
108 | 26270 | 7, 13, 109, 127 | 108, 127, 156, 211, 217, 653, 998, 1267, 1271, 1854, 2252, 2393, 2399, 2724, 2842, 2915, 2942, 2976, 3098, 3563, 3571, 3925, 3938, 4162, 4311, 4391, 4468, 4623, 4699, 5013, 5117, 5251, 5778, 5794, 5849, 5924, 5994, 6686, 7211, 7478, 8401, 8623, 8642, 8828, 9127, 9482, 9578, 9941, 10188, 10202, 10245, 10574, 10689, 10973, 11008, 11028, 11321, 11335, 11703, 11833, 11909, 12172, 12209, 12427, 12534, 13081, 13299, 13316, 13844, 13861, 14044, 14134, 14691, 14932, 15207, 15638, 15912, 15913, 15926, 16042, 16122, 16240, 16569, 16896, 17267, 17616, 18319, 18638, 19098, 19158, 19294, 19318, 19839, 19948, 19966, 20303, 20687, 20929, 21181, 21262, 21511, 21532, 21581, 21818, 21908, 22008, 22182, 22194, 22259, 22266, 22562, 22706, 23066, 23327, 23543, 23838, 24078, 24088, 24103, 24529, 24756, 24767, 24853, 25062, 25068, 25071, 25319, 25546, 25607, 25763, 25973, 26234, 26256 (k = 108 at n=16.77M, other k at n=100K) | 7612 (99261)
7304 (94930) 15874 (94153) 8034 (93577) 2874 (91402) 20666 (91335) 7631 (90728) 9187 (90213) 6759 (89530) 21101 (88027) |
||
109 | 19 | 2, 5 | 1 (524K) | 3 (6)
4 (3) 18 (2) 16 (2) 12 (2) 11 (2) 6 (2) 5 (2) 17 (1) 15 (1) |
||
110 | 38 | 3, 37 | none - proven | 20 (933)
34 (356) 11 (161) 13 (124) 19 (66) 25 (58) 2 (51) 22 (42) 28 (12) 18 (11) |
||
111 | 13 | 2, 7 | none - proven | 8 (62)
1 (16) 9 (8) 11 (5) 6 (3) 12 (2) 5 (2) 10 (1) 7 (1) 4 (1) |
||
112 | 2261 | 5, 13, 113 | 209, 269, 467, 941, 1292, 1412, 1463, 1499, 1517, 1604, 1613, 1664, 1696, 1937 (k = 1696 at n=1M, other k at n=6.9K) | 1780 (62794)
547 (8124) 953 (6802) 677 (5723) 1920 (5333) 2082 (5308) 1712 (4836) 813 (4616) 8 (4526) 1217 (3872) |
||
113 | 20 | 3, 19 | 17 (8K) | 4 (2958)
13 (1336) 19 (50) 18 (47) 8 (47) 16 (40) 12 (4) 3 (4) 1 (4) 15 (2) |
||
114 | 24 | 5, 23 | none - proven | 1 (32)
12 (15) 3 (12) 22 (11) 11 (10) 9 (5) 16 (4) 23 (3) 19 (3) 15 (3) |
||
115 | 57 | 2, 29 | 17, 47 (both at n=8K) | 30 (47376)
50 (798) 38 (94) 46 (79) 23 (51) 5 (44) 53 (38) 40 (38) 49 (14) 37 (12) |
||
116 | 14 | 3, 13 | none - proven | 12 (47)
9 (8) 4 (6) 10 (4) 7 (4) 5 (3) 13 (2) 6 (2) 1 (2) 11 (1) |
||
117 | 119 | 2, 59 | 59, 117 (k = 59 at n=8K, k = 117 at n=524K) | 58 (460033)
75 (1428) 11 (1164) 77 (311) 2 (286) 81 (264) 47 (227) 67 (182) 4 (101) 51 (76) |
||
118 | 50 | 7, 17 | 48 (740K) | 43 (106)
36 (96) 18 (80) 33 (67) 3 (46) 15 (22) 29 (10) 21 (7) 35 (6) 46 (5) |
||
119 | 4 | 3, 5 | none - proven | 1 (4)
3 (1) 2 (1) |
||
120 | 374876369 | 11, 13, 1117, 14281 | 56, 89, 208, 219, 307, 309, 426, 540, 560, 694, 714, 727, 991, 1024, 1167, 1616, 1658, 1662, 1689, 1833, 1946, 1969, 1970, 2023, 2078, 2157, 2223, 2279, 2377, 2395, 2509, 2519, 2881, 3161, 3257, 3301, 3321, 3345, 3387, 3510, 3561, 3598, 3607, 3774, 3805, 3814, 3827, 3860, 3893, 3950, 4212, 4333, 4367, 4456, 4610, 4724, 4762, 4852, 4993, 5069, 5191, 5347, 5433, 5543, 5553, 5665, 5763, 5875, 5894, 5928, 6029, 6084, 6447, 6478, 6502, 6715, 6718, 6984, 7097, 7195, 7248, 7284, 7379, 7589, 7998, 8051, 8161, 8189, 8293, 8304, 8359, 8382, 8427, 8514, 8636, 8669, 8678, 8693, 8876, 8931, 8933, 8957, 9041, 9043, 9058, 9109, 9140, 9195, 9318, 9351, 9494, 9513, 9637, 9721, 9890 (for k <= 10K) (all at n=1K) | 8389 (969)
6546 (954) 3195 (951) 3466 (908) 7479 (899) 3359 (897) 4437 (870) 8584 (843) 6382 (803) 738 (790) |
||
121 | 27 | 7, 19, 37 | none - proven | 23 (102)
24 (72) 7 (6) 17 (5) 10 (5) 2 (5) 25 (4) 21 (4) 19 (4) 16 (4) |
||
122 | 40 | 3, 41 | 1, 34 (k = 1 at n=16.77M, k = 34 at n=1M) | 37 (1622)
31 (1236) 16 (764) 2 (755) 25 (674) 23 (389) 17 (371) 4 (358) 5 (135) 28 (108) |
||
123 | 55 | 2, 17, 89 | 1, 3, 41 (k = 1 at n=524K, other k at n=8K) | 19 (59)
38 (42) 47 (29) 13 (28) 34 (19) 28 (19) 8 (16) 54 (15) 15 (15) 53 (14) |
||
124 | 31001 | 3, 5, 7, 5167 | 54, 61, 76, 83, 89, 96, 114, 121, 146, 171, 206, 209, 221, 239, 251, 344, 362, 376, 381, 386, 411, 416, 431, 446, 449, 516, 519, 526, 530, 576, 581, 601, 635, 646, 647, 656, 661, 669, 670, 676, 684, 731, 766, 794, 804, 809, 831, 836, 841, 872, 896, 911, 971, 976, 1019, 1031, 1051, 1054, 1076, 1111, 1124, 1129, 1136, 1166, 1190, 1229, 1251, 1254, 1259, 1264, 1284, 1298, 1324, 1326, 1336, 1369, 1421, 1446, 1460, 1461, 1471, 1474, 1477, 1499, 1519, 1535, 1536, 1551, 1569, 1586, 1591, 1601, 1604, 1647, 1657, 1676, 1686, 1700, 1721, 1727, 1734, 1741, 1779, 1801, 1814, 1829, 1844, 1864, 1910, 1955, 2021, 2034, 2036, 2045, 2055, 2067, 2069, 2096, 2097, 2109, 2114, 2129, 2159, 2163, 2179, 2216, 2234, 2266, 2306, 2316, 2354, 2374, 2375, 2406, 2414, 2429, 2436, 2446, 2462, 2504, 2507, 2539, 2559, 2561, 2565, 2621, 2639, 2646, 2651, 2716, 2726, 2734, 2799, 2821, 2834, 2840, 2844, 2861, 2864, 2874, 2901, 2906, 2934, 2981, 2999, 3019, 3032, 3041, 3049, 3053, 3071, 3144, 3161, 3164, 3181, 3229, 3236, 3242, 3251, 3281, 3285, 3296, 3299, 3316, 3329, 3351, 3405, 3442, 3470, 3471, 3491, 3494, 3533, 3554, 3561, 3574, 3631, 3659, 3674, 3684, 3714, 3726, 3736, 3737, 3758, 3779, 3806, 3824, 3854, 3869, 3881, 3890, 3911, 3916, 3921, 3941, 3961, 3981, 3986, 3994, 4021, 4049, 4086, 4089, 4124, 4127, 4131, 4153, 4162, 4191, 4196, 4226, 4231, 4254, 4297, 4306, 4314, 4352, 4375, 4388, 4406, 4414, 4421, 4454, 4476, 4489, 4500, 4506, 4520, 4521, 4529, 4541, 4546, 4589, 4594, 4604, 4629, 4719, 4739, 4751, 4764, 4769, 4799, 4849, 4891, 4910, 4926, 4936, 4952, 4961, 4964, 4973, 4974, 5001, 5041, 5048, 5049, 5108, 5114, 5121, 5149, 5154, 5189, 5191, 5231, 5244, 5279, 5289, 5300, 5316, 5321, 5326, 5364, 5366, 5369, 5375, 5381, 5384, 5414, 5440, 5462, 5474, 5481, 5489, 5519, 5543, 5551, 5579, 5581, 5596, 5651, 5663, 5681, 5696, 5697, 5701, 5721, 5723, 5738, 5744, 5771, 5781, 5799, 5801, 5816, 5819, 5825, 5839, 5840, 5851, 5876, 5884, 5909, 5919, 5939, 5951, 5976, 5981, 6024, 6026, 6036, 6041, 6046, 6059, 6099, 6146, 6151, 6161, 6164, 6166, 6196, 6201, 6211, 6219, 6224, 6241, 6269, 6296, 6310, 6323, 6329, 6366, 6383, 6386, 6394, 6401, 6409, 6410, 6411, 6416, 6486, 6494, 6496, 6511, 6514, 6536, 6539, 6559, 6596, 6620, 6621, 6644, 6646, 6647, 6654, 6659, 6665, 6686, 6689, 6691, 6712, 6729, 6731, 6746, 6749, 6751, 6761, 6789, 6794, 6806, 6821, 6864, 6881, 6891, 6904, 6908, 6926, 6949, 6956, 6959, 6962, 6971, 7004, 7006, 7016, 7034, 7036, 7071, 7074, 7079, 7081, 7146, 7169, 7204, 7216, 7227, 7239, 7259, 7269, 7271, 7276, 7301, 7319, 7324, 7331, 7359, 7369, 7376, 7391, 7424, 7439, 7446, 7451, 7454, 7472, 7484, 7486, 7499, 7523, 7544, 7559, 7565, 7586, 7601, 7609, 7639, 7656, 7664, 7666, 7671, 7691, 7739, 7744, 7761, 7796, 7801, 7831, 7851, 7868, 7881, 7886, 7931, 7949, 7979, 7981, 8014, 8017, 8034, 8042, 8054, 8114, 8141, 8146, 8192, 8213, 8219, 8221, 8231, 8274, 8279, 8291, 8296, 8321, 8323, 8351, 8354, 8381, 8396, 8417, 8423, 8424, 8429, 8516, 8519, 8526, 8531, 8532, 8579, 8634, 8641, 8651, 8666, 8681, 8711, 8714, 8741, 8771, 8776, 8780, 8786, 8829, 8831, 8876, 8916, 8921, 8930, 8936, 8939, 8966, 8978, 8982, 9006, 9024, 9026, 9038, 9069, 9099, 9106, 9118, 9138, 9161, 9166, 9173, 9187, 9209, 9214, 9216, 9226, 9244, 9261, 9267, 9269, 9286, 9302, 9314, 9319, 9411, 9479, 9483, 9509, 9521, 9536, 9594, 9596, 9598, 9599, 9641, 9651, 9681, 9687, 9743, 9754, 9785, 9791, 9831, 9836, 9865, 9866, 9901, 9911, 9914, 9949, 9971 (for k <= 10K) (all at n=1K) | 1646 (998)
8094 (997) 1886 (996) 1926 (994) 2987 (985) 7193 (981) 3276 (974) 6974 (973) 6951 (966) 2801 (960) |
||
125 | 7 | 2, 3 | All k = m^3 for all n;
factors to: (m*5^n + 1) * (m^2*25^n - m*5^n + 1) |
none - proven | 4 (2)
3 (2) 6 (1) 5 (1) 2 (1) |
k = 1 proven composite by full algebraic factors. |
126 | 766700 | 13, 19, 127, 829 | 259, 1084, 1117, 1154, 2708, 2922, 3735, 3982, 5093, 5099, 5392, 5529, 5587, 6059, 6478, 6772, 7817, 8150, 8304, 8659, 8759, 8779, 8829, 9268, 9429, 9474, 9624, 10072, 10540, 11008, 11429, 12094, 12414, 12750, 12757, 12799, 12900, 13111, 13129, 13264, 13274, 13309, 14299, 14390, 14538, 14598, 15402, 15454, 15781, 15876, 15883, 16312, 17300, 18119, 18394, 18594, 18795, 19421, 19479, 19484, 19499, 19559, 19894, 20326, 20394, 20609, 20914, 21083, 21369, 21679, 21694, 21999, 22582, 24023, 24119, 24543, 24764, 25399, 25624, 25739, 25757, 25913, 26374, 26441, 27179, 27884, 27948, 28222, 28374, 28602, 28729, 29590 (for k <= 30K) (k = 4 mod 5 at n=1K, other k at n=25K) | 26532 (23264)
27765 (22565) 15493 (22097) 25722 (20095) 29405 (19897) 28188 (17368) 25575 (17359) 26036 (15264) 27433 (14598) 12965 (14155) |
||
127 | 6343 | 2, 5, 17, 137 | 1, 37, 67, 103, 121, 134, 138, 139, 141, 153, 172, 177, 189, 201, 205, 215, 223, 237, 247, 263, 267, 301, 311, 343, 367, 381, 383, 387, 398, 409, 413, 425, 447, 452, 465, 469, 474, 487, 495, 525, 527, 529, 543, 569, 582, 601, 629, 645, 647, 649, 657, 659, 673, 681, 691, 701, 707, 727, 733, 763, 781, 790, 797, 807, 809, 818, 819, 837, 847, 849, 887, 895, 901, 903, 907, 909, 925, 927, 941, 954, 1011, 1021, 1023, 1043, 1075, 1079, 1103, 1109, 1121, 1123, 1147, 1161, 1165, 1167, 1169, 1173, 1193, 1199, 1201, 1229, 1232, 1237, 1239, 1243, 1244, 1261, 1303, 1309, 1322, 1329, 1343, 1351, 1357, 1362, 1379, 1381, 1383, 1403, 1417, 1423, 1425, 1427, 1431, 1439, 1441, 1461, 1463, 1466, 1472, 1483, 1487, 1494, 1515, 1543, 1544, 1547, 1549, 1553, 1557, 1565, 1574, 1581, 1583, 1603, 1607, 1615, 1621, 1641, 1649, 1686, 1691, 1719, 1723, 1741, 1742, 1747, 1753, 1754, 1765, 1783, 1785, 1793, 1801, 1808, 1815, 1827, 1841, 1849, 1861, 1875, 1887, 1917, 1921, 1954, 1961, 1981, 1987, 1997, 2001, 2022, 2027, 2041, 2055, 2083, 2089, 2109, 2123, 2147, 2152, 2156, 2167, 2177, 2181, 2189, 2211, 2229, 2235, 2241, 2261, 2263, 2265, 2285, 2287, 2330, 2335, 2336, 2341, 2375, 2401, 2403, 2409, 2429, 2441, 2461, 2521, 2523, 2531, 2537, 2551, 2603, 2607, 2625, 2627, 2636, 2649, 2657, 2661, 2687, 2701, 2721, 2729, 2741, 2744, 2749, 2778, 2801, 2803, 2809, 2847, 2861, 2863, 2867, 2869, 2887, 2894, 2907, 2908, 2909, 2915, 2921, 2929, 2949, 2961, 2963, 2977, 2981, 2987, 2988, 2993, 3001, 3005, 3041, 3045, 3061, 3069, 3089, 3093, 3095, 3099, 3107, 3121, 3129, 3133, 3141, 3143, 3169, 3181, 3199, 3209, 3221, 3241, 3243, 3276, 3283, 3297, 3303, 3309, 3313, 3325, 3327, 3329, 3345, 3363, 3377, 3381, 3392, 3401, 3407, 3419, 3421, 3449, 3455, 3461, 3489, 3501, 3521, 3526, 3527, 3533, 3543, 3545, 3549, 3563, 3603, 3641, 3646, 3647, 3703, 3741, 3743, 3747, 3763, 3779, 3790, 3807, 3811, 3812, 3815, 3821, 3823, 3829, 3896, 3923, 3929, 3947, 3981, 3986, 3987, 3995, 3996, 4001, 4007, 4021, 4029, 4031, 4039, 4045, 4063, 4073, 4079, 4081, 4087, 4112, 4125, 4135, 4157, 4164, 4167, 4181, 4185, 4193, 4201, 4207, 4229, 4241, 4247, 4261, 4281, 4289, 4309, 4323, 4327, 4329, 4339, 4364, 4373, 4381, 4382, 4385, 4416, 4421, 4437, 4447, 4455, 4469, 4481, 4503, 4517, 4521, 4527, 4531, 4547, 4573, 4587, 4609, 4614, 4617, 4643, 4645, 4667, 4677, 4684, 4701, 4705, 4742, 4761, 4781, 4809, 4819, 4823, 4829, 4849, 4867, 4887, 4891, 4896, 4909, 4957, 4968, 4969, 4975, 4987, 4995, 5005, 5009, 5016, 5023, 5025, 5041, 5057, 5061, 5067, 5069, 5091, 5101, 5119, 5123, 5149, 5165, 5172, 5187, 5189, 5201, 5205, 5226, 5238, 5247, 5249, 5267, 5273, 5283, 5321, 5327, 5331, 5343, 5347, 5363, 5368, 5379, 5381, 5387, 5391, 5399, 5415, 5429, 5435, 5441, 5443, 5457, 5461, 5469, 5477, 5485, 5487, 5488, 5503, 5507, 5529, 5531, 5534, 5543, 5547, 5549, 5563, 5577, 5583, 5589, 5606, 5609, 5615, 5618, 5619, 5622, 5623, 5627, 5638, 5665, 5668, 5674, 5678, 5687, 5697, 5701, 5707, 5713, 5721, 5723, 5735, 5747, 5761, 5767, 5799, 5807, 5813, 5823, 5837, 5841, 5859, 5861, 5863, 5867, 5887, 5888, 5903, 5923, 5929, 5941, 5955, 5957, 5966, 5981, 5996, 6015, 6021, 6041, 6047, 6048, 6057, 6081, 6085, 6087, 6111, 6114, 6121, 6149, 6209, 6221, 6231, 6237, 6245, 6261, 6269, 6275, 6277 (all at n=1K) | 2163 (985)
2837 (982) 6065 (980) 2479 (975) 3525 (972) 365 (968) 5541 (964) 5654 (963) 6129 (950) 2267 (947) |
||
128 | 44 | 3, 43 | All k = m^7 for all n;
factors to: (m*2^n + 1) * (m^6*64^n - m^5*32^n + m^4*16^n - m^3*8^n + m^2*4^n - m*2^n + 1) |
16, 40 (k = 16 at n=4.908G, k = 40 at n=1.2857M) | 41 (39271)
42 (13001) 20 (473) 28 (322) 38 (291) 19 (178) 25 (64) 3 (27) 17 (21) 31 (20) |
k = 1 proven composite by full algebraic factors.
k = 8 and 32 have no possible prime. |
129 | 14 | 5, 13 | none - proven | 6 (16796)
4 (19) 9 (15) 2 (6) 1 (4) 11 (2) 5 (2) 13 (1) 12 (1) 10 (1) |
||
130 | 1049 | 3, 7, 31, 131 | 37, 50, 71, 227, 341, 414, 545, 794, 809, 920, 1013 (all at n=2K) | 992 (1751)
458 (1399) 773 (1303) 593 (917) 944 (880) 83 (695) 278 (662) 272 (614) 1046 (612) 290 (543) |
||
131 | 5 | 2, 3 | none - proven | 4 (2)
1 (2) 3 (1) 2 (1) |
||
132 | 13 | 5, 7, 17 | none - proven | 6 (5)
1 (4) 7 (3) 12 (2) 9 (2) 8 (2) 4 (2) 2 (2) 11 (1) 10 (1) |
||
133 | 59 | 2, 5, 29 | 23, 51 (both at n=2K) | 19 (806)
57 (174) 38 (43) 48 (18) 43 (12) 58 (10) 45 (8) 41 (8) 27 (8) 8 (7) |
||
134 | 4 | 3, 5 | none - proven | 3 (4)
1 (2) 2 (1) |
||
135 | 33 | 2, 17 | 1, 17 (k = 1 at n=524K, k = 17 at n=2K) | 21 (1154)
7 (213) 10 (54) 25 (38) 20 (28) 32 (13) 3 (9) 28 (8) 8 (8) 5 (4) |
||
136 | 29180 | 53, 137, 349 | testing not started | testing not started | ||
137 | 22 | 3, 23 | 1, 5, 17 (k = 1 at n=524K, other k at n=2K) | 2 (327)
10 (102) 14 (93) 16 (48) 11 (19) 4 (18) 13 (4) 7 (4) 12 (3) 19 (2) |
||
138 | 2781 | 5, 13, 139 | 138, 211, 344, 678, 1188, 1444, 1494, 1818, 2371, 2627 (k = 138 at n=16.77M, other k at n=500K) | 2636 (469911)
2189 (345010) 2354 (314727) 1019 (274533) 1789 (271671) 141 (244616) 2416 (214921) 866 (212835) 2062 (192750) 47 (136218) |
||
139 | 6 | 3, 5 | none - proven | 5 (6)
2 (5) 3 (3) 1 (2) 4 (1) |
||
140 | 46 | 3, 47 | 8 (1M) | 16 (251178)
34 (136) 29 (103) 38 (79) 13 (64) 28 (44) 11 (37) 44 (31) 10 (24) 14 (23) |
||
141 | 143 | 2, 71 | 19, 27, 64, 107 (all at n=2K) | 123 (312)
95 (109) 7 (99) 46 (75) 129 (73) 39 (53) 77 (47) 17 (45) 15 (25) 93 (24) |
||
142 | 12 | 11, 13 | none - proven | 10 (407)
7 (23) 2 (4) 1 (4) 5 (3) 3 (2) 11 (1) 9 (1) 8 (1) 6 (1) |
||
143 | 5 | 2, 3 | 1 (524K) | 3 (183)
4 (10) 2 (5) |
||
144 | 59 | 5, 29 | 1 (16.77M) | 34 (3061)
37 (1154) 6 (782) 31 (102) 55 (88) 30 (72) 35 (42) 17 (39) 46 (16) 40 (15) |
||
145 | 1023 | 2, 73 | 18, 58, 94, 220, 221, 367, 458, 539, 628, 719, 729, 783, 795, 802, 863, 904 (all at n=2K) | 72 (769)
559 (734) 490 (632) 335 (586) 940 (512) 951 (506) 336 (448) 8 (401) 989 (397) 176 (396) |
||
146 | 8 | 3, 7 | none - proven | 5 (3)
7 (2) 4 (2) 1 (2) 6 (1) 3 (1) 2 (1) |
||
147 | 73 | 2, 37 | 1, 17, 19, 35, 47, 63 (k = 1 at n=524K, other k at n=2K) | 66 (520)
65 (434) 69 (226) 43 (201) 2 (154) 37 (152) 61 (136) 25 (128) 14 (115) 54 (62) |
||
148 | 3128 | 5, 13, 149 | 43, 98, 148, 168, 246, 299, 302, 359, 392, 413, 416, 464, 563, 641, 684, 728, 768, 776, 802, 876, 941, 953, 963, 1091, 1093, 1101, 1103, 1136, 1166, 1185, 1295, 1322, 1379, 1418, 1427, 1496, 1559, 1611, 1633, 1638, 1652, 1669, 1799, 1808, 1877, 1901, 2064, 2072, 2107, 2162, 2207, 2361, 2417, 2548, 2573, 2576, 2716, 2745, 2852, 2933, 2978, 2981, 2996, 3029, 3033, 3038, 3071, 3112 (all at n=2K) | 2369 (1947)
338 (1947) 1781 (1829) 134 (1783) 2467 (1709) 1256 (1705) 1571 (1696) 1787 (1677) 1586 (1644) 1676 (1541) |
||
149 | 4 | 3, 5 | 1 (524K) | 2 (3)
3 (2) |
||
150 | 49074 | 7, 31, 103, 151 | 343, 1553, 3980, 4578, 5254, 5413, 5891, 6041, 7342, 7506, 7724, 8787, 8906, 10256, 10699, 11434, 11465, 11475, 12232, 13591, 14265, 16046, 17366, 18806, 19256, 19480, 20235, 20537, 20789, 20988, 21388, 22045, 22604, 23307, 24765, 24914, 25364, 26478, 26909, 27320, 27502, 29265, 29446, 30501, 30654, 31666, 33674, 34594, 35391, 35484, 36265, 36774, 40232, 40839, 41073, 42128, 42734, 43093, 43200, 43275, 44242, 44441, 45161, 46649, 46660, 47111, 48168, 48354, 48617 (all at n=100K) | 2529 (95448)
25295 (93740) 43789 (91123) 30505 (91058) 15402 (88775) 610 (87338) 41663 (83930) 22810 (81558) 26349 (75650) 22237 (72247) |
||
151 | 37 | 2, 19 | 1 (524K) | 15 (925)
25 (166) 32 (63) 20 (40) 8 (19) 19 (11) 17 (10) 30 (8) 7 (7) 33 (6) |
||
152 | 16 | 3, 17 | none - proven | 11 (837)
6 (27) 4 (18) 13 (8) 1 (8) 9 (7) 12 (4) 2 (3) 10 (2) 7 (2) |
||
153 | 15 | 2, 7 | none - proven | 13 (79)
3 (4) 1 (4) 12 (2) 9 (2) 8 (2) 7 (2) 14 (1) 11 (1) 10 (1) |
||
154 | 61 | 5, 31 | none - proven (for the k=16 prime, factor N-1 is equivalent to factor 154^252-1) | 40 (9256)
16 (252) 36 (138) 44 (89) 31 (88) 37 (79) 59 (17) 43 (15) 9 (15) 26 (8) |
||
155 | 5 | 2, 3 | 1, 4 (k = 1 at n=524K, k = 4 at n=1.5M) | 3 (1)
2 (1) |
||
156 | unknown (>10^9, <=18406311208) | unknown | testing not started | testing not started | ||
157 | 47 | 2, 5, 17 | 15, 17, 23 (all at n=2K) | 18 (3873)
29 (1650) 38 (492) 44 (449) 30 (132) 35 (92) 20 (63) 46 (49) 40 (33) 41 (27) |
||
158 | 52 | 3, 53 | none - proven | 8 (123475)
48 (24191) 32 (13401) 38 (10519) 27 (4966) 20 (1633) 37 (1034) 4 (874) 43 (178) 47 (141) |
||
159 | 9 | 2, 5 | none - proven (primality certificate for k=5) | 5 (234)
4 (29) 8 (5) 2 (3) 6 (2) 1 (2) 7 (1) 3 (1) |
||
160 | 22 | 7, 23 | 20 (2K) | 18 (27)
14 (5) 16 (4) 9 (4) 8 (4) 7 (4) 6 (3) 15 (2) 12 (2) 5 (2) |
||
161 | 95 | 2, 3 | 1, 47, 79 (k = 1 at n=524K, other k at n=2K) | 5 (5627)
4 (4650) 53 (1603) 26 (57) 40 (52) 91 (48) 13 (44) 61 (40) 19 (40) 83 (39) |
||
162 | 6193 | 5, 13, 37, 61, 163 | 363, 685, 916, 1248, 1438, 2358, 2603, 2609, 2757, 2841, 2874, 2953, 3002, 3096, 3562, 3856, 3961, 4297, 4409, 4654, 4831, 4871, 5039, 5102, 5242, 5706, 5869, 6002 (k = 6 mod 7 and k = 22 mod 23 at n=2K, other k at n=300K) | 6102 (230090)
2212 (227663) 3052 (200790) 1764 (76926) 3496 (60128) 1250 (58127) 933 (55381) 2163 (49760) 2377 (47102) 1398 (33797) |
||
163 | 81 | 2, 41 | 8, 12, 38, 41, 63, 73 (k = 8 at n=6K, k = 12 at n=500K, other k at n=2K) | 66 (107651)
6 (1303) 27 (409) 17 (374) 21 (236) 23 (175) 65 (148) 69 (134) 61 (84) 53 (50) |
||
164 | 4 | 3, 5 | none - proven | 3 (4)
1 (4) 2 (3) |
||
165 | 167 | 2, 83 | 43 (2K) | 80 (1104)
143 (703) 87 (589) 131 (300) 82 (273) 34 (269) 103 (137) 23 (135) 75 (74) 13 (40) |
||
166 | 335 | 3, 7, 13, 167 | 29, 137, 141, 166, 208, 209, 243, 269, 326 (all at n=2K) | 101 (1049)
113 (318) 225 (277) 334 (156) 149 (132) 191 (129) 230 (99) 107 (86) 123 (84) 95 (81) |
||
167 | 5 | 2, 3 | none - proven | 2 (6547)
1 (16) 4 (10) 3 (1) |
||
168 | 9244 | 5, 13, 17, 73 | 1, 77, 248, 298, 467, 469, 740, 818, 901, 1236, 1377, 1437, 1886, 1998, 2183, 2211, 2378, 2406, 2731, 2770, 2963, 2991, 3057, 3514, 3654, 3717, 3977, 4161, 4174, 4224, 4226, 4382, 4441, 4499, 4517, 4616, 4746, 4913, 5303, 5381, 5474, 5526, 5539, 5680, 5812, 5981, 6083, 6124, 6166, 6241, 6319, 6356, 6382, 6772, 6787, 6824, 6967, 7032, 7099, 7123, 7292, 7422, 7541, 7697, 7708, 7736, 7916, 8164, 8293, 8334, 8971, 9138 (k = 1 at n=16.77M, k = 4174 at n=2K, other k at n=100K) | 1561 (97864)
1398 (80456) 5942 (77280) 4432 (73477) 8072 (68617) 7188 (62211) 3394 (55546) 2614 (54002) 7240 (50425) 6892 (48868) |
||
169 | 16 | 5, 17 | none - proven (for the k=11 prime, factor N-1 is equivalent to factor 169^282-1) | 11 (282)
7 (8) 14 (3) 10 (2) 8 (2) 6 (2) 5 (2) 1 (2) 15 (1) 13 (1) |
||
170 | 20 | 3, 19 | none - proven | 7 (178)
5 (175) 19 (36) 17 (21) 13 (4) 3 (3) 2 (3) 16 (2) 10 (2) 4 (2) |
||
171 | 85 | 2, 43 | 23, 29, 31, 39, 45, 73 (all at n=2K) | 30 (229506)
17 (370) 69 (212) 71 (127) 77 (98) 79 (65) 58 (36) 84 (31) 37 (18) 57 (14) |
||
172 | 62 | 3, 7, 13 | none - proven (primality certificate for k=26, primality certificate for k=59) | 26 (287)
52 (259) 59 (214) 22 (108) 17 (84) 54 (35) 51 (35) 48 (26) 40 (23) 19 (15) |
||
173 | 7 | 2, 3 | none - proven | 1 (16)
4 (10) 3 (2) 6 (1) 5 (1) 2 (1) |
||
174 | 6 | 3, 5 | 4 (1M) | 1 (4)
3 (1) 2 (1) |
||
175 | 21 | 2, 11 | none - proven | 5 (64)
15 (59) 20 (36) 11 (9) 9 (8) 14 (7) 13 (6) 18 (3) 10 (3) 2 (3) |
||
176 | 58 | 3, 59 | 55 (2K) | 32 (3591)
37 (3088) 35 (995) 50 (213) 10 (146) 49 (108) 28 (24) 46 (16) 31 (14) 27 (14) |
||
177 | 79 | 2, 5, 13 | none - proven (primality certificate for k=77) | 12 (3810)
77 (646) 8 (64) 33 (54) 41 (40) 67 (36) 24 (30) 15 (18) 48 (14) 63 (13) |
||
178 | 569 | 3, 13, 19 | 32, 41, 83, 96, 126, 128, 136, 155, 167, 178, 194, 212, 217, 251, 278, 283, 284, 357, 359, 372, 382, 383, 398, 407, 458, 468, 474, 480, 506, 550, 566 (all at n=2K) | 433 (1888)
362 (1821) 410 (1626) 488 (1248) 353 (1207) 331 (1028) 363 (1018) 8 (956) 214 (889) 442 (840) |
||
179 | 4 | 3, 5 | 1 (524K) | 3 (1)
2 (1) |
||
180 | 1679679 | 7, 31, 181, 1051 | testing not started | testing not started | ||
181 | 15 | 2, 7 | none - proven | 8 (10)
11 (6) 13 (5) 12 (3) 14 (2) 4 (2) 3 (2) 2 (2) 1 (2) 10 (1) |
||
182 | 23 | 3, 5, 53 | 1, 8 (k = 1 at n=16.77M, k = 8 at n=1M) | 9 (263)
19 (90) 4 (70) 2 (15) 13 (12) 20 (5) 18 (4) 16 (4) 7 (4) 17 (3) |
||
183 | 45 | 2, 23 | 1, 5, 9, 41 (k = 1 at n=524K, other k at n=2K) | 24 (298)
33 (198) 38 (112) 11 (59) 29 (58) 12 (48) 14 (46) 3 (35) 37 (32) 13 (24) |
||
184 | 36 | 5, 37 | none - proven (primality certificate for k=20) | 20 (1298)
16 (298) 23 (70) 6 (40) 4 (29) 32 (16) 3 (11) 12 (10) 29 (9) 10 (9) |
||
185 | 23 | 2, 3 | 10, 22 (k = 10 at n=1M, k = 22 at n=2K) | 19 (540)
4 (414) 6 (170) 13 (98) 1 (8) 21 (3) 17 (3) 9 (3) 2 (3) 16 (2) |
||
186 | 67 | 11, 17 | 1, 34 (k = 1 at n=16.77M, k = 34 at n=2K) | 65 (18879)
56 (300) 24 (258) 35 (134) 16 (107) 40 (98) 52 (72) 45 (58) 54 (29) 50 (25) |
||
187 | 47 | 2, 5, 13 | 5, 9, 29, 47, 51, 53, 61 (all at n=2K) | 49 (938)
23 (801) 59 (141) 27 (71) 41 (68) 31 (55) 67 (47) 65 (46) 15 (43) 50 (24) |
||
188 | 8 | 3, 7 | none - proven | 4 (26)
1 (16) 2 (9) 7 (2) 3 (2) 6 (1) 5 (1) |
||
189 | 19 | 2, 5 | 1 (524K) | 18 (171175)
16 (42) 6 (34) 8 (7) 11 (4) 3 (4) 9 (3) 10 (2) 5 (2) 17 (1) |
||
190 | 2157728 | 13, 191, 2777 | testing not started | testing not started | ||
191 | 5 | 2, 3 | 3 (6K) | 1 (32)
4 (6) 2 (1) |
||
192 | 7879 | 5, 7, 13, 31, 101 | 712, 787, 1031, 1157, 1234, 1369, 1388, 1627, 1806, 1828, 1899, 1929, 1931, 1965, 2311, 2313, 2461, 2482, 2521, 2537, 2672, 2807, 2928, 2988, 3020, 3346, 3604, 3827, 3929, 4024, 4054, 4672, 4768, 4826, 4859, 5010, 5059, 5147, 5262, 5373, 5752, 5927, 5958, 5982, 6133, 6257, 6474, 6523, 6968, 6995, 7152, 7414, 7437, 7528, 7600, 7666, 7822 (k = 2482 at n=2K, other k at n=100K) | 1122 (89238)
5594 (86270) 5675 (74618) 3473 (69049) 4566 (67168) 2829 (63997) 6878 (60430) 5375 (54124) 6898 (52349) 7586 (49923) |
||
193 | 2687 | 2, 3, 5, 7, 37 | 5, 24, 63, 68, 98, 122, 131, 150, 167, 188, 193, 203, 264, 271, 290, 293, 299, 320, 333, 367, 371, 412, 413, 419, 486, 527, 542, 545, 586, 608, 632, 678, 680, 719, 722, 731, 733, 775, 790, 819, 821, 831, 852, 962, 971, 977, 1010, 1013, 1028, 1034, 1046, 1050, 1064, 1066, 1069, 1091, 1097, 1112, 1141, 1153, 1156, 1163, 1187, 1195, 1201, 1262, 1274, 1294, 1333, 1340, 1349, 1355, 1357, 1393, 1403, 1412, 1418, 1427, 1437, 1446, 1451, 1456, 1464, 1466, 1469, 1487, 1504, 1517, 1613, 1623, 1653, 1676, 1679, 1753, 1784, 1796, 1832, 1844, 1873, 1916, 1922, 1928, 1943, 1946, 1970, 1977, 1980, 1981, 1986, 2005, 2008, 2052, 2062, 2070, 2091, 2105, 2114, 2168, 2177, 2213, 2225, 2246, 2264, 2306, 2329, 2348, 2354, 2367, 2385, 2426, 2434, 2442, 2446, 2460, 2489, 2506, 2511, 2520, 2523, 2525, 2554, 2558, 2572, 2581, 2593, 2602, 2603, 2621, 2623 (all at n=2K) | 2243 (1839)
292 (1830) 194 (1767) 929 (1763) 1049 (1729) 1238 (1702) 518 (1699) 956 (1673) 2643 (1635) 214 (1622) |
||
194 | 4 | 3, 5 | none - proven | 1 (4)
3 (2) 2 (1) |
||
195 | 13 | 2, 7 | none - proven (the k=11 prime is proven prime by N-1, and primality certificate for the large prime factor of N-1) | 11 (239)
8 (16) 2 (6) 9 (4) 4 (3) 5 (2) 1 (2) 12 (1) 10 (1) 7 (1) |
||
196 | 16457 | 3, 61, 211 | 84, 155, 196, 208, 335, 421, 434, 481, 497, 729, 974, 1262, 1268, 1271, 1313, 1378, 1397, 1494, 1553, 1770, 1854, 1861, 1913, 1971, 2024, 2027, 2036, 2078, 2096, 2168, 2378, 2480, 2541, 2547, 2558, 2561, 2615, 2643, 2705, 2779, 2839, 2881, 2954, 3023, 3044, 3110, 3230, 3472, 3503, 3658, 3689, 3722, 3830, 3851, 3938, 4286, 4377, 4451, 4523, 4574, 4730, 4886, 4924, 4952, 5088, 5116, 5123, 5149, 5274, 5302, 5342, 5378, 5444, 5477, 5557, 5714, 5759, 5770, 5771, 5794, 5810, 5909, 6026, 6038, 6116, 6139, 6179, 6221, 6354, 6541, 6654, 6674, 6715, 6716, 6784, 6896, 6962, 7006, 7009, 7090, 7102, 7175, 7301, 7442, 7544, 7595, 7637, 7697, 7760, 7827, 7871, 7904, 8261, 8324, 8363, 8405, 8434, 8539, 8648, 8664, 8684, 8771, 8807, 8819, 8876, 8896, 9103, 9104, 9113, 9206, 9286, 9393, 9415, 9494, 9641, 9743, 9852, 9929, 10016, 10093, 10139, 10199, 10215, 10313, 10325, 10474, 10524, 10613, 10655, 10757, 10830, 10832, 10889, 10905, 10919, 10920, 10973, 10979, 11015, 11165, 11228, 11258, 11314, 11348, 11519, 11586, 11591, 11624, 11699, 11831, 11952, 11971, 12209, 12238, 12446, 12458, 12464, 12493, 12614, 12766, 12782, 12814, 12899, 12923, 12938, 13070, 13088, 13092, 13198, 13251, 13364, 13414, 13421, 13430, 13436, 13556, 13566, 13571, 13595, 13631, 13664, 13700, 13745, 13791, 13859, 13982, 14090, 14091, 14104, 14123, 14144, 14255, 14348, 14414, 14435, 14438, 14444, 14569, 14588, 14625, 14670, 14711, 14715, 14759, 14810, 14823, 14900, 14959, 14971, 15083, 15098, 15172, 15317, 15362, 15485, 15659, 15728, 15835, 15861, 16133, 16187, 16208, 16265, 16286, 16350, 16391 (all at n=2K) | 789 (1926)
9609 (1914) 3618 (1887) 9530 (1823) 15177 (1804) 14390 (1790) 2082 (1774) 13983 (1772) 14585 (1767) 11387 (1767) |
||
197 | 7 | 2, 3 | 1 (524K) | 4 (6)
6 (5) 3 (4) 5 (3) 2 (3) |
||
198 | 4105 | 7, 13, 19, 2053 | 173, 311, 374, 381, 486, 714, 907, 979, 996, 1193, 1195, 1298, 1338, 1557, 1678, 1762, 1812, 1889, 1991, 2064, 2071, 2166, 2196, 2287, 2389, 2400, 2427, 2817, 2924, 3058, 3338, 3431, 3618, 3891, 3981, 4016, 4065 (k = 2166 at n=2K, other k at n=100K) | 1074 (86150)
2976 (78439) 4014 (73851) 2864 (62462) 2084 (56478) 706 (55247) 2253 (54740) 621 (53839) 3962 (49750) 758 (47832) |
||
199 | 9 | 2, 5 | none - proven (for the k=3 prime, factor N+1 is equivalent to factor 199^183+1) | 3 (183)
2 (16) 5 (6) 7 (3) 8 (2) 6 (2) 1 (2) 4 (1) |
||
200 | 47 | 3, 13, 17 | k = 16:
odd n: factor of 3 n = = 0 mod 4: factor of 17 n = = 2 mod 4: let n = 4*q - 2 and let m = 20^q*10^(q-1); factors to: (2*m^2 + 2m + 1) * (2*m^2 - 2m + 1) |
1, 40 (k = 1 at n=16.77M, k = 40 at n=1M) | 25 (21874)
10 (6036) 13 (1858) 38 (1669) 26 (1011) 5 (767) 34 (710) 19 (528) 46 (226) 43 (124) |
|
256 | 38 | 3, 7, 13 | All k=4*q^4 for all n:
let k=4*q^4 and let m=q*4^n; factors to: (2*m^2 + 2m + 1) * (2*m^2 - 2m + 1) |
none - proven (primality certificate for k=11, primality certificate for k=23) | 11 (5702)
23 (537) 20 (20) 7 (15) 22 (10) 25 (8) 15 (6) 36 (5) 6 (5) 28 (3) |
k = 4 proven composite by full algebraic factors. |
512 | 18 | 5, 13, 19 | All k = m^3 for all n;
factors to: (m*8^n + 1) * (m^2*64^n - m*8^n + 1) |
2, 4, 5, 16 (k = 2 at n=2.001P, k = 4 at n=62.54T, k = 5 at n=1M, k = 16 at n=1.954T) | 12 (23)
14 (21) 7 (20) 11 (9) 9 (7) 10 (6) 17 (3) 13 (2) 3 (2) 15 (1) |
k = 1 and 8 proven composite by full algebraic factors. |
1024 | 81 | 5, 41 | All k = m^5 for all n;
factors to: (m*4^n + 1) * (m^4*256^n - m^3*64^n + m^2*16^n - m*4^n + 1) |
4, 16, 29, 38, 56 (k = 4 at n=858.9M, k = 16 at n=1.717G, other k at n=3K) | 44 (1933)
41 (350) 9 (323) 51 (266) 14 (221) 33 (142) 48 (53) 11 (46) 54 (37) 10 (36) |
k = 1 and 32 proven composite by full algebraic factors. |