Real series/Absolutely convergent/Section

From Wikiversity
Jump to navigation Jump to search


Definition  

A series

of real numbers is called absolutely convergent, if the series

converges.


Lemma

Proof  

Let be given. We use the Cauchy-criterion Since the series converges absolutely, there exists some such that for all the estimate

Failed to parse (syntax error): {\displaystyle {{}} \vert{ \sum_{k <table class="metadata plainlinks ambox ambox-notice" style=""> <tr> <td class="mbox-image"><div style="width: 52px;"> [[File:Wikiversity logo 2017.svg|50px|link=]]</div></td> <td class="mbox-text" style=""> '''[[m:Soft redirect|Soft redirect]]'''<br />This page can be found at <span id="SoftRedirect">[[mw:Help:Magic words#Other]]</span>. </td> </tr> </table>[[Category:Wikiversity soft redirects|Real series/Absolutely convergent/Section]] __NOINDEX__ m}^n \vert{ a_k }\vert \, }\vert = \sum_{k <table class="metadata plainlinks ambox ambox-notice" style=""> <tr> <td class="mbox-image"><div style="width: 52px;"> [[File:Wikiversity logo 2017.svg|50px|link=]]</div></td> <td class="mbox-text" style=""> '''[[m:Soft redirect|Soft redirect]]'''<br />This page can be found at <span id="SoftRedirect">[[mw:Help:Magic words#Other]]</span>. </td> </tr> </table>[[Category:Wikiversity soft redirects|Real series/Absolutely convergent/Section]] __NOINDEX__ m}^n \vert{ a_k }\vert \leq \epsilon \, }

holds. Therefore,

Failed to parse (syntax error): {\displaystyle {{}} \vert{ \sum_{k <table class="metadata plainlinks ambox ambox-notice" style=""> <tr> <td class="mbox-image"><div style="width: 52px;"> [[File:Wikiversity logo 2017.svg|50px|link=]]</div></td> <td class="mbox-text" style=""> '''[[m:Soft redirect|Soft redirect]]'''<br />This page can be found at <span id="SoftRedirect">[[mw:Help:Magic words#Other]]</span>. </td> </tr> </table>[[Category:Wikiversity soft redirects|Real series/Absolutely convergent/Section]] __NOINDEX__ m}^n a_k }\vert \leq \vert{ \sum_{k <table class="metadata plainlinks ambox ambox-notice" style=""> <tr> <td class="mbox-image"><div style="width: 52px;"> [[File:Wikiversity logo 2017.svg|50px|link=]]</div></td> <td class="mbox-text" style=""> '''[[m:Soft redirect|Soft redirect]]'''<br />This page can be found at <span id="SoftRedirect">[[mw:Help:Magic words#Other]]</span>. </td> </tr> </table>[[Category:Wikiversity soft redirects|Real series/Absolutely convergent/Section]] __NOINDEX__ m}^n \vert{ a_k }\vert \, }\vert \leq \epsilon \, , }

which means the convergence.



Example

A convergent series does not in general converge absolutely, the converse of

does not hold. Due to the Leibniz criterion the alternating harmonic series

Failed to parse (syntax error): {\displaystyle {{}} \sum_{n <table class="metadata plainlinks ambox ambox-notice" style=""> <tr> <td class="mbox-image"><div style="width: 52px;"> [[File:Wikiversity logo 2017.svg|50px|link=]]</div></td> <td class="mbox-text" style=""> '''[[m:Soft redirect|Soft redirect]]'''<br />This page can be found at <span id="SoftRedirect">[[mw:Help:Magic words#Other]]</span>. </td> </tr> </table>[[Category:Wikiversity soft redirects|Real series/Absolutely convergent/Section]] __NOINDEX__ 1}^\infty \frac{ (-1)^{n+1} }{n} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \ldots \, }

converges, and its sum is , a result we can not prove here. However, the corresponding absolute series is just the harmonic series, which diverges due to example.

The following statement is called the direct comparison test.


Lemma

Let be a convergent series of real numbers and a sequence of real numbers fulfilling for all . Then the series

is absolutely convergent.

Proof  

This follows directly from the Cauchy-criterion



Example

We want to determine whether the series

Failed to parse (syntax error): {\displaystyle {{}} \sum_{k <table class="metadata plainlinks ambox ambox-notice" style=""> <tr> <td class="mbox-image"><div style="width: 52px;"> [[File:Wikiversity logo 2017.svg|50px|link=]]</div></td> <td class="mbox-text" style=""> '''[[m:Soft redirect|Soft redirect]]'''<br />This page can be found at <span id="SoftRedirect">[[mw:Help:Magic words#Other]]</span>. </td> </tr> </table>[[Category:Wikiversity soft redirects|Real series/Absolutely convergent/Section]] __NOINDEX__ 1}^\infty \frac{ 1 }{ k^2 } = 1 + \frac{ 1 }{ 4 } + \frac{ 1 }{ 9 } + \frac{ 1 }{ 16 } + \frac{ 1 }{ 25 } + \ldots \, }

converges. We use the direct comparison test and example, where we have shown the convergence of Failed to parse (syntax error): {\displaystyle {{}} \sum_{k <table class="metadata plainlinks ambox ambox-notice" style=""> <tr> <td class="mbox-image"><div style="width: 52px;"> [[File:Wikiversity logo 2017.svg|50px|link=]]</div></td> <td class="mbox-text" style=""> '''[[m:Soft redirect|Soft redirect]]'''<br />This page can be found at <span id="SoftRedirect">[[mw:Help:Magic words#Other]]</span>. </td> </tr> </table>[[Category:Wikiversity soft redirects|Real series/Absolutely convergent/Section]] __NOINDEX__ 1}^n \frac{ 1 }{ k(k+1) }} . For we have

Hence, converges and therefore also . This does not say much about the exact value of the sum. With much more advanced methods, one can show that this sum equals .