Let
(
x
n
)
n
∈
N
{\displaystyle {}{\left(x_{n}\right)}_{n\in \mathbb {N} }}
and
(
y
n
)
n
∈
N
{\displaystyle {}{\left(y_{n}\right)}_{n\in \mathbb {N} }}
be
convergent sequences . Then the following statements hold.
The sequence
(
x
n
+
y
n
)
n
∈
N
{\displaystyle {}{\left(x_{n}+y_{n}\right)}_{n\in \mathbb {N} }}
is convergent, and
lim
n
→
∞
(
x
n
+
y
n
)
=
(
lim
n
→
∞
x
n
)
+
(
lim
n
→
∞
y
n
)
{\displaystyle {}\lim _{n\rightarrow \infty }{\left(x_{n}+y_{n}\right)}={\left(\lim _{n\rightarrow \infty }x_{n}\right)}+{\left(\lim _{n\rightarrow \infty }y_{n}\right)}\,}
holds.
The sequence
(
x
n
⋅
y
n
)
n
∈
N
{\displaystyle {}{\left(x_{n}\cdot y_{n}\right)}_{n\in \mathbb {N} }}
is convergent, and
lim
n
→
∞
(
x
n
⋅
y
n
)
=
(
lim
n
→
∞
x
n
)
⋅
(
lim
n
→
∞
y
n
)
{\displaystyle {}\lim _{n\rightarrow \infty }{\left(x_{n}\cdot y_{n}\right)}={\left(\lim _{n\rightarrow \infty }x_{n}\right)}\cdot {\left(\lim _{n\rightarrow \infty }y_{n}\right)}\,}
holds.
For
c
∈
R
{\displaystyle {}c\in \mathbb {R} }
,
we have
lim
n
→
∞
c
x
n
=
c
(
lim
n
→
∞
x
n
)
.
{\displaystyle {}\lim _{n\rightarrow \infty }cx_{n}=c{\left(\lim _{n\rightarrow \infty }x_{n}\right)}\,.}
Suppose that
lim
n
→
∞
x
n
=
x
≠
0
{\displaystyle {}\lim _{n\rightarrow \infty }x_{n}=x\neq 0}
and
x
n
≠
0
{\displaystyle {}x_{n}\neq 0}
for all
n
∈
N
{\displaystyle {}n\in \mathbb {N} }
.
Then
(
1
x
n
)
n
∈
N
{\displaystyle {}\left({\frac {1}{x_{n}}}\right)_{n\in \mathbb {N} }}
is also convergent, and
lim
n
→
∞
1
x
n
=
1
x
{\displaystyle {}\lim _{n\rightarrow \infty }{\frac {1}{x_{n}}}={\frac {1}{x}}\,}
holds.
Suppose that
lim
n
→
∞
x
n
=
x
≠
0
{\displaystyle {}\lim _{n\rightarrow \infty }x_{n}=x\neq 0}
and that
x
n
≠
0
{\displaystyle {}x_{n}\neq 0}
for all
n
∈
N
{\displaystyle {}n\in \mathbb {N} }
.
Then
(
y
n
x
n
)
n
∈
N
{\displaystyle {}\left({\frac {y_{n}}{x_{n}}}\right)_{n\in \mathbb {N} }}
is also convergent, and
lim
n
→
∞
y
n
x
n
=
lim
n
→
∞
y
n
x
{\displaystyle {}\lim _{n\rightarrow \infty }{\frac {y_{n}}{x_{n}}}={\frac {\lim _{n\rightarrow \infty }y_{n}}{x}}\,}
holds.
(1). Denote the limits of the sequences by
x
{\displaystyle {}x}
and
y
{\displaystyle {}y}
, respectively. Let
ϵ
>
0
{\displaystyle {}\epsilon >0}
be given. Due to the convergence of the first sequence, there exists for
ϵ
′
=
ϵ
2
{\displaystyle {}\epsilon '={\frac {\epsilon }{2}}\,}
some
n
0
{\displaystyle {}n_{0}}
such that for all
n
≥
n
0
{\displaystyle {}n\geq n_{0}}
the estimate
|
x
n
−
x
|
≤
ϵ
′
{\displaystyle {}\vert {x_{n}-x}\vert \leq \epsilon '\,}
holds. In the same way there exists due to the convergence of the second sequence for
ϵ
′
=
ϵ
2
{\displaystyle {}\epsilon '={\frac {\epsilon }{2}}}
some
n
0
′
{\displaystyle {}n_{0}'}
such that for all
n
≥
n
0
′
{\displaystyle {}n\geq n_{0}'}
the estimate
|
y
n
−
y
|
≤
ϵ
′
{\displaystyle {}\vert {y_{n}-y}\vert \leq \epsilon '\,}
holds. Set
N
=
max
(
n
0
,
n
0
′
)
.
{\displaystyle {}N={\max {\left(n_{0},n_{0}'\right)}}\,.}
Then for all
n
≥
N
{\displaystyle {}n\geq N}
the estimate
|
x
n
+
y
n
−
(
x
+
y
)
|
=
|
x
n
+
y
n
−
x
−
y
|
=
|
x
n
−
x
+
y
n
−
y
|
≤
|
x
n
−
x
|
+
|
y
n
−
y
|
≤
ϵ
′
+
ϵ
′
=
ϵ
{\displaystyle {}{\begin{aligned}\vert {x_{n}+y_{n}-(x+y)}\vert &=\vert {x_{n}+y_{n}-x-y}\vert \\&=\vert {x_{n}-x+y_{n}-y}\vert \\&\leq \vert {x_{n}-x}\vert +\vert {y_{n}-y}\vert \\&\leq \epsilon '+\epsilon '\\&=\epsilon \end{aligned}}}
holds.
(2). Let
ϵ
>
0
{\displaystyle {}\epsilon >0}
be given. The convergent sequence
(
x
n
)
n
∈
N
{\displaystyle {}{\left(x_{n}\right)}_{n\in \mathbb {N} }}
is
bounded ,
due to
fact ,
and therefore there exists a
D
>
0
{\displaystyle {}D>0}
such that
|
x
n
|
≤
D
{\displaystyle {}\vert {x_{n}}\vert \leq D}
for all
n
∈
N
{\displaystyle {}n\in \mathbb {N} }
.
Set
x
:=
lim
n
→
∞
x
n
{\displaystyle {}x:=\lim _{n\rightarrow \infty }x_{n}}
and
y
:=
lim
n
→
∞
y
n
{\displaystyle {}y:=\lim _{n\rightarrow \infty }y_{n}}
.
We put
C
:=
max
(
D
,
|
y
|
)
{\displaystyle {}C:={\max {\left(D,\vert {y}\vert \right)}}}
.
Because of the convergence, there are natural numbers
N
1
{\displaystyle {}N_{1}}
and
N
2
{\displaystyle {}N_{2}}
such that
|
x
n
−
x
|
≤
ϵ
2
C
for
n
≥
N
1
and
|
y
n
−
y
|
≤
ϵ
2
C
for
n
≥
N
2
.
{\displaystyle \vert {x_{n}-x}\vert \leq {\frac {\epsilon }{2C}}{\text{ for }}n\geq N_{1}{\text{ and }}\vert {y_{n}-y}\vert \leq {\frac {\epsilon }{2C}}{\text{ for }}n\geq N_{2}.}
These estimates hold also for all
n
≥
N
:=
max
(
N
1
,
N
2
)
{\displaystyle {}n\geq N:={\max {\left(N_{1},N_{2}\right)}}}
.
For these numbers, the estimates
|
x
n
y
n
−
x
y
|
=
|
x
n
y
n
−
x
n
y
+
x
n
y
−
x
y
|
≤
|
x
n
y
n
−
x
n
y
|
+
|
x
n
y
−
x
y
|
=
|
x
n
|
|
y
n
−
y
|
+
|
y
|
|
x
n
−
x
|
≤
C
ϵ
2
C
+
C
ϵ
2
C
=
ϵ
{\displaystyle {}{\begin{aligned}\vert {x_{n}y_{n}-xy}\vert &=\vert {x_{n}y_{n}-x_{n}y+x_{n}y-xy}\vert \\&\leq \vert {x_{n}y_{n}-x_{n}y}\vert +\vert {x_{n}y-xy}\vert \\&=\vert {x_{n}}\vert \vert {y_{n}-y}\vert +\vert {y}\vert \vert {x_{n}-x}\vert \\&\leq C{\frac {\epsilon }{2C}}+C{\frac {\epsilon }{2C}}\\&=\epsilon \end{aligned}}}
hold.
For the other parts, see
exercise ,
exercise
and
exercise .
◻
{\displaystyle \Box }
We give a typical application of this statement.