An illustration of the product rule: the increment of the area is about the seize of the sum of the two products of the side length and the increment of the other side length. For the infinitesimal increment, the product of the two increments is irrelevant.
Let
D
⊆
R
{\displaystyle {}D\subseteq \mathbb {R} }
be a subset,
a
∈
D
{\displaystyle {}a\in D}
a point, and
f
,
g
:
D
⟶
R
{\displaystyle f,g\colon D\longrightarrow \mathbb {R} }
functions
which are
differentiable
in
a
{\displaystyle {}a}
. Then the following rules for differentiability holds.
The sum
f
+
g
{\displaystyle {}f+g}
is differentiable in
a
{\displaystyle {}a}
, with
(
f
+
g
)
′
(
a
)
=
f
′
(
a
)
+
g
′
(
a
)
.
{\displaystyle {}(f+g)'(a)=f'(a)+g'(a)\,.}
The product
f
⋅
g
{\displaystyle {}f\cdot g}
is differentiable in
a
{\displaystyle {}a}
, with
(
f
⋅
g
)
′
(
a
)
=
f
′
(
a
)
g
(
a
)
+
f
(
a
)
g
′
(
a
)
.
{\displaystyle {}(f\cdot g)'(a)=f'(a)g(a)+f(a)g'(a)\,.}
For
c
∈
R
{\displaystyle {}c\in \mathbb {R} }
,
also
c
f
{\displaystyle {}cf}
is differentiable in
a
{\displaystyle {}a}
, with
(
c
f
)
′
(
a
)
=
c
f
′
(
a
)
.
{\displaystyle {}(cf)'(a)=cf'(a)\,.}
If
g
{\displaystyle {}g}
has no zero in
a
{\displaystyle {}a}
, then
1
/
g
{\displaystyle {}1/g}
is differentiable in
a
{\displaystyle {}a}
, with
(
1
g
)
′
(
a
)
=
−
g
′
(
a
)
(
g
(
a
)
)
2
.
{\displaystyle {}{\left({\frac {1}{g}}\right)}'(a)={\frac {-g'(a)}{(g(a))^{2}}}\,.}
If
g
{\displaystyle {}g}
has no zero in
a
{\displaystyle {}a}
, then
f
/
g
{\displaystyle {}f/g}
is differentiable in
a
{\displaystyle {}a}
, with
(
f
g
)
′
(
a
)
=
f
′
(
a
)
g
(
a
)
−
f
(
a
)
g
′
(
a
)
(
g
(
a
)
)
2
.
{\displaystyle {}{\left({\frac {f}{g}}\right)}'(a)={\frac {f'(a)g(a)-f(a)g'(a)}{(g(a))^{2}}}\,.}
(1). We write
f
{\displaystyle {}f}
and
g
{\displaystyle {}g}
respectively with the objects which were formulated in
fact ,
that is
f
(
x
)
=
f
(
a
)
+
s
(
x
−
a
)
+
r
(
x
)
(
x
−
a
)
{\displaystyle {}f(x)=f(a)+s(x-a)+r(x)(x-a)\,}
and
g
(
x
)
=
g
(
a
)
+
s
~
(
x
−
a
)
+
r
~
(
x
)
(
x
−
a
)
.
{\displaystyle {}g(x)=g(a)+{\tilde {s}}(x-a)+{\tilde {r}}(x)(x-a)\,.}
Summing up yields
f
(
x
)
+
g
(
x
)
=
f
(
a
)
+
g
(
a
)
+
(
s
+
s
~
)
(
x
−
a
)
+
(
r
+
r
~
)
(
x
)
(
x
−
a
)
.
{\displaystyle {}f(x)+g(x)=f(a)+g(a)+(s+{\tilde {s}})(x-a)+(r+{\tilde {r}})(x)(x-a)\,.}
Here, the sum
r
+
r
~
{\displaystyle {}r+{\tilde {r}}}
is again continuous in
a
{\displaystyle {}a}
, with value
0
{\displaystyle {}0}
.
(2). We start again with
f
(
x
)
=
f
(
a
)
+
s
(
x
−
a
)
+
r
(
x
)
(
x
−
a
)
{\displaystyle {}f(x)=f(a)+s(x-a)+r(x)(x-a)\,}
and
g
(
x
)
=
g
(
a
)
+
s
~
(
x
−
a
)
+
r
~
(
x
)
(
x
−
a
)
,
{\displaystyle {}g(x)=g(a)+{\tilde {s}}(x-a)+{\tilde {r}}(x)(x-a)\,,}
and multiply both equations. This yields
f
(
x
)
g
(
x
)
=
(
f
(
a
)
+
s
(
x
−
a
)
+
r
(
x
)
(
x
−
a
)
)
(
g
(
a
)
+
s
~
(
x
−
a
)
+
r
~
(
x
)
(
x
−
a
)
)
=
f
(
a
)
g
(
a
)
+
(
s
g
(
a
)
+
s
~
f
(
a
)
)
(
x
−
a
)
+
(
f
(
a
)
r
~
(
x
)
+
g
(
a
)
r
(
x
)
+
s
s
~
(
x
−
a
)
+
s
r
~
(
x
)
(
x
−
a
)
+
s
~
r
(
x
)
(
x
−
a
)
+
r
(
x
)
r
~
(
x
)
(
x
−
a
)
)
(
x
−
a
)
.
{\displaystyle {}{\begin{aligned}f(x)g(x)&=(f(a)+s(x-a)+r(x)(x-a))(g(a)+{\tilde {s}}(x-a)+{\tilde {r}}(x)(x-a))\\&=f(a)g(a)+(sg(a)+{\tilde {s}}f(a))(x-a)\\&\,\,\,\,\,+(f(a){\tilde {r}}(x)+g(a)r(x)+s{\tilde {s}}(x-a)+s{\tilde {r}}(x)(x-a)+{\tilde {s}}r(x)(x-a)+r(x){\tilde {r}}(x)(x-a))(x-a).\end{aligned}}}
Due to
fact
for
limits,
the expression consisting of the last six summands is a continuous function, with value
0
{\displaystyle {}0}
for
x
=
a
{\displaystyle {}x=a}
.
(3) follows from (2), since a constant function is differentiable with derivative
0
{\displaystyle {}0}
.
(4). We have
1
g
(
x
)
−
1
g
(
a
)
x
−
a
=
−
1
g
(
a
)
g
(
x
)
⋅
g
(
x
)
−
g
(
a
)
x
−
a
.
{\displaystyle {}{\frac {{\frac {1}{g(x)}}-{\frac {1}{g(a)}}}{x-a}}={\frac {-1}{g(a)g(x)}}\cdot {\frac {g(x)-g(a)}{x-a}}\,.}
Since
g
{\displaystyle {}g}
is continuous in
a
{\displaystyle {}a}
, due to
fact ,
the left-hand factor converges for
x
→
a
{\displaystyle {}x\rightarrow a}
to
−
1
g
(
a
)
2
{\displaystyle {}-{\frac {1}{g(a)^{2}}}}
, and because of the differentiability of
g
{\displaystyle {}g}
in
a
{\displaystyle {}a}
, the right-hand factor converges to
g
′
(
a
)
{\displaystyle {}g'(a)}
.
(5) follows from (2) and (4).
◻
{\displaystyle \Box }
These rules are called sum rule , product rule , quotient rule . The following statement is called chain rule .
Due to
fact ,
one can write
f
(
x
)
=
f
(
a
)
+
f
′
(
a
)
(
x
−
a
)
+
r
(
x
)
(
x
−
a
)
{\displaystyle {}f(x)=f(a)+f'(a)(x-a)+r(x)(x-a)\,}
and
g
(
y
)
=
g
(
b
)
+
g
′
(
b
)
(
y
−
b
)
+
s
(
y
)
(
y
−
b
)
.
{\displaystyle {}g(y)=g(b)+g'(b)(y-b)+s(y)(y-b)\,.}
Therefore,
g
(
f
(
x
)
)
=
g
(
f
(
a
)
)
+
g
′
(
f
(
a
)
)
(
f
(
x
)
−
f
(
a
)
)
+
s
(
f
(
x
)
)
(
f
(
x
)
−
f
(
a
)
)
=
g
(
f
(
a
)
)
+
g
′
(
f
(
a
)
)
(
f
′
(
a
)
(
x
−
a
)
+
r
(
x
)
(
x
−
a
)
)
+
s
(
f
(
x
)
)
(
f
′
(
a
)
(
x
−
a
)
+
r
(
x
)
(
x
−
a
)
)
=
g
(
f
(
a
)
)
+
g
′
(
f
(
a
)
)
f
′
(
a
)
(
x
−
a
)
+
(
g
′
(
f
(
a
)
)
r
(
x
)
+
s
(
f
(
x
)
)
(
f
′
(
a
)
+
r
(
x
)
)
)
(
x
−
a
)
.
{\displaystyle {}{\begin{aligned}g(f(x))&=g(f(a))+g'(f(a))(f(x)-f(a))+s(f(x))(f(x)-f(a))\\&=g(f(a))+g'(f(a)){\left(f'(a)(x-a)+r(x)(x-a)\right)}+s(f(x)){\left(f'(a)(x-a)+r(x)(x-a)\right)}\\&=g(f(a))+g'(f(a))f'(a)(x-a)+{\left(g'(f(a))r(x)+s(f(x))(f'(a)+r(x))\right)}(x-a).\end{aligned}}}
The remainder function
t
(
x
)
:=
g
′
(
f
(
a
)
)
r
(
x
)
+
s
(
f
(
x
)
)
(
f
′
(
a
)
+
r
(
x
)
)
{\displaystyle {}t(x):=g'(f(a))r(x)+s(f(x))(f'(a)+r(x))\,}
is continuous in
a
{\displaystyle {}a}
with value
0
{\displaystyle {}0}
.
◻
{\displaystyle \Box }
An illustration for the derivative of the inverse function. The graph of the inverse function is the reflection of the graph at the diagonal, and the tangent behaves accordingly.
We consider the difference quotient
f
−
1
(
y
)
−
f
−
1
(
b
)
y
−
b
=
f
−
1
(
y
)
−
a
y
−
b
,
{\displaystyle {}{\frac {f^{-1}(y)-f^{-1}(b)}{y-b}}={\frac {f^{-1}(y)-a}{y-b}}\,,}
and have to show that the limit for
y
→
b
{\displaystyle {}y\rightarrow b}
exists, and obtains the value claimed. For this, let
(
y
n
)
n
∈
N
{\displaystyle {}{\left(y_{n}\right)}_{n\in \mathbb {N} }}
denote a
sequence
in
E
∖
{
b
}
{\displaystyle {}E\setminus \{b\}}
,
converging
to
b
{\displaystyle {}b}
. Because of
fact ,
the function
f
−
1
{\displaystyle {}f^{-1}}
is continuous. Therefore, also the sequence with the members
x
n
:=
f
−
1
(
y
n
)
{\displaystyle {}x_{n}:=f^{-1}(y_{n})}
converges to
a
{\displaystyle {}a}
. Because of bijectivity,
x
n
≠
a
{\displaystyle {}x_{n}\neq a}
for all
n
{\displaystyle {}n}
. Thus
lim
n
→
∞
f
−
1
(
y
n
)
−
a
y
n
−
b
=
lim
n
→
∞
x
n
−
a
f
(
x
n
)
−
f
(
a
)
=
(
lim
n
→
∞
f
(
x
n
)
−
f
(
a
)
x
n
−
a
)
−
1
,
{\displaystyle {}\lim _{n\rightarrow \infty }{\frac {f^{-1}(y_{n})-a}{y_{n}-b}}=\lim _{n\rightarrow \infty }{\frac {x_{n}-a}{f(x_{n})-f(a)}}={\left(\lim _{n\rightarrow \infty }{\frac {f(x_{n})-f(a)}{x_{n}-a}}\right)}^{-1}\,,}
where the right-hand side exists, due to the condition, and the second equation follows from
fact (5) .
◻
{\displaystyle \Box }