# Quizbank/Electricity and Magnetism (calculus based)/QB153099154193

QB153099154193

## Contents

- 1 QB:Ch 5:V0
- 2 QB:Ch 5:V1
- 3 QB:Ch 5:V2
- 4 QB:Ch 6:V0
- 5 QB:Ch 6:V1
- 6 QB:Ch 6:V2
- 7 QB:Ch 7:V0
- 8 QB:Ch 7:V1
- 9 QB:Ch 7:V2
- 10 QB:Ch 8:V0
- 11 QB:Ch 8:V1
- 12 QB:Ch 8:V2
- 13 QB:Ch 9:V0
- 14 QB:Ch 9:V1
- 15 QB:Ch 9:V2
- 16 QB:Ch 10:V0
- 17 QB:Ch 10:V1
- 18 QB:Ch 10:V2
- 19 QB:Ch 11:V0
- 20 QB:Ch 11:V1
- 21 QB:Ch 11:V2
- 22 QB:Ch 12:V0
- 23 QB:Ch 12:V1
- 24 QB:Ch 12:V2
- 25 QB:Ch 13:V0
- 26 QB:Ch 13:V1
- 27 QB:Ch 13:V2
- 28 QB:Ch 14:V0
- 29 QB:Ch 14:V1
- 30 QB:Ch 14:V2
- 31 QB:Ch 15:V0
- 32 QB:Ch 15:V1
- 33 QB:Ch 15:V2
- 34 QB:Ch 16:V0
- 35 QB:Ch 16:V1
- 36 QB:Ch 16:V2

### QB:Ch 5:V0[edit]

QB153099154193

- a) 5.272E+01 degrees
- b) 5.799E+01 degrees
- c) 6.379E+01 degrees
- d) 7.017E+01 degrees
- e) 7.719E+01 degrees

is an integral that calculates the z-component of the electric field at point P situated above the x-axis where a charged rod of length (a+b) is located. The distance between point P and the x-axis is z=1.5 m. Evaluate at x=0.79 m if a=0.75 m, b=2.1 m. The total charge on the rod is 6 nC.

- a) 5.825E+00 V/m
^{2} - b) 6.407E+00 V/m
^{2} - c) 7.048E+00 V/m
^{2} - d) 7.753E+00 V/m
^{2} - e) 8.528E+00 V/m
^{2}

- a) 1.172E-14 N
- b) 1.290E-14 N
- c) 1.419E-14 N
- d) 1.561E-14 N
- e) 1.717E-14 N

#### KEY:QB:Ch 5:V0[edit]

QB153099154193

- -a) 5.272E+01 degrees
- +b) 5.799E+01 degrees
- -c) 6.379E+01 degrees
- -d) 7.017E+01 degrees
- -e) 7.719E+01 degrees

is an integral that calculates the z-component of the electric field at point P situated above the x-axis where a charged rod of length (a+b) is located. The distance between point P and the x-axis is z=1.5 m. Evaluate at x=0.79 m if a=0.75 m, b=2.1 m. The total charge on the rod is 6 nC.

- +a) 5.825E+00 V/m
^{2} - -b) 6.407E+00 V/m
^{2} - -c) 7.048E+00 V/m
^{2} - -d) 7.753E+00 V/m
^{2} - -e) 8.528E+00 V/m
^{2}

- -a) 1.172E-14 N
- +b) 1.290E-14 N
- -c) 1.419E-14 N
- -d) 1.561E-14 N
- -e) 1.717E-14 N

### QB:Ch 5:V1[edit]

QB153099154193

is an integral that calculates the z-component of the electric field at point P situated above the x-axis where a charged rod of length (a+b) is located. The distance between point P and the x-axis is z=1.8 m. Evaluate at x=0.5 m if a=0.67 m, b=2.4 m. The total charge on the rod is 9 nC.

- a) 5.465E+00 V/m
^{2} - b) 6.012E+00 V/m
^{2} - c) 6.613E+00 V/m
^{2} - d) 7.274E+00 V/m
^{2} - e) 8.002E+00 V/m
^{2}

- a) 5.243E+01 degrees
- b) 5.767E+01 degrees
- c) 6.343E+01 degrees
- d) 6.978E+01 degrees
- e) 7.676E+01 degrees

- a) 2.036E-14 N
- b) 2.240E-14 N
- c) 2.464E-14 N
- d) 2.710E-14 N
- e) 2.981E-14 N

#### KEY:QB:Ch 5:V1[edit]

QB153099154193

is an integral that calculates the z-component of the electric field at point P situated above the x-axis where a charged rod of length (a+b) is located. The distance between point P and the x-axis is z=1.8 m. Evaluate at x=0.5 m if a=0.67 m, b=2.4 m. The total charge on the rod is 9 nC.

- -a) 5.465E+00 V/m
^{2} - -b) 6.012E+00 V/m
^{2} - -c) 6.613E+00 V/m
^{2} - +d) 7.274E+00 V/m
^{2} - -e) 8.002E+00 V/m
^{2}

- -a) 5.243E+01 degrees
- -b) 5.767E+01 degrees
- +c) 6.343E+01 degrees
- -d) 6.978E+01 degrees
- -e) 7.676E+01 degrees

- -a) 2.036E-14 N
- -b) 2.240E-14 N
- +c) 2.464E-14 N
- -d) 2.710E-14 N
- -e) 2.981E-14 N

### QB:Ch 5:V2[edit]

QB153099154193

is an integral that calculates the z-component of the electric field at point P situated above the x-axis where a charged rod of length (a+b) is located. The distance between point P and the x-axis is z=1.5 m. Evaluate at x=1.1 m if a=0.62 m, b=1.3 m. The total charge on the rod is 7 nC.

- a) 6.311E+00 V/m
^{2} - b) 6.943E+00 V/m
^{2} - c) 7.637E+00 V/m
^{2} - d) 8.401E+00 V/m
^{2} - e) 9.241E+00 V/m
^{2}

- a) 1.473E-14 N
- b) 1.620E-14 N
- c) 1.782E-14 N
- d) 1.960E-14 N
- e) 2.156E-14 N

- a) 5.272E+01 degrees
- b) 5.799E+01 degrees
- c) 6.379E+01 degrees
- d) 7.017E+01 degrees
- e) 7.719E+01 degrees

#### KEY:QB:Ch 5:V2[edit]

QB153099154193

is an integral that calculates the z-component of the electric field at point P situated above the x-axis where a charged rod of length (a+b) is located. The distance between point P and the x-axis is z=1.5 m. Evaluate at x=1.1 m if a=0.62 m, b=1.3 m. The total charge on the rod is 7 nC.

- -a) 6.311E+00 V/m
^{2} - -b) 6.943E+00 V/m
^{2} - +c) 7.637E+00 V/m
^{2} - -d) 8.401E+00 V/m
^{2} - -e) 9.241E+00 V/m
^{2}

- -a) 1.473E-14 N
- -b) 1.620E-14 N
- -c) 1.782E-14 N
- -d) 1.960E-14 N
- +e) 2.156E-14 N

- -a) 5.272E+01 degrees
- +b) 5.799E+01 degrees
- -c) 6.379E+01 degrees
- -d) 7.017E+01 degrees
- -e) 7.719E+01 degrees

### QB:Ch 6:V0[edit]

QB153099154193

_{1}=2.5 m. The other four surfaces are rectangles in y=y

_{0}=1.4 m, y=y

_{1}=4.8 m, z=z

_{0}=1.7 m, and z=z

_{1}=4.6 m. The surfaces in the yz plane each have area 9.9m

^{2}. Those in the xy plane have area 8.5m

^{2},and those in the zx plane have area 7.2m

^{2}. An electric field of magnitude 14 N/C has components in the y and z directions and is directed at 55° from the z-axis. What is the magnitude (absolute value) of the electric flux through a surface aligned parallel to the xz plane?

- a) 8.314E+01 N·m
^{2}/C - b) 9.146E+01 N·m
^{2}/C - c) 1.006E+02 N·m
^{2}/C - d) 1.107E+02 N·m
^{2}/C - e) 1.217E+02 N·m
^{2}/C

2) Five concentric spherical shells have radius of exactly (1m, 2m, 3m, 4m, 5m).Each is uniformly charged with 1.2 nano-Coulombs. What is the magnitude of the electric field at a distance of 5.8 m from the center of the shells?

- a) 1.096E+00 N/C
- b) 1.206E+00 N/C
- c) 1.327E+00 N/C
- d) 1.459E+00 N/C
- e) 1.605E+00 N/C

3) A non-conducting sphere of radius R=3.5 m has a non-uniform charge density that varies with the distnce from its center as given by ρ(r)=ar^{1.5} (r≤R) where a=2 nC·m^{-1.5}. What is the magnitude of the electric field at a distance of 2.2 m from the center?

- a) 3.604E+02 N/C
- b) 3.964E+02 N/C
- c) 4.360E+02 N/C
- d) 4.796E+02 N/C
- e) 5.276E+02 N/C

#### KEY:QB:Ch 6:V0[edit]

QB153099154193

_{1}=2.5 m. The other four surfaces are rectangles in y=y

_{0}=1.4 m, y=y

_{1}=4.8 m, z=z

_{0}=1.7 m, and z=z

_{1}=4.6 m. The surfaces in the yz plane each have area 9.9m

^{2}. Those in the xy plane have area 8.5m

^{2},and those in the zx plane have area 7.2m

^{2}. An electric field of magnitude 14 N/C has components in the y and z directions and is directed at 55° from the z-axis. What is the magnitude (absolute value) of the electric flux through a surface aligned parallel to the xz plane?

- +a) 8.314E+01 N·m
^{2}/C - -b) 9.146E+01 N·m
^{2}/C - -c) 1.006E+02 N·m
^{2}/C - -d) 1.107E+02 N·m
^{2}/C - -e) 1.217E+02 N·m
^{2}/C

2) Five concentric spherical shells have radius of exactly (1m, 2m, 3m, 4m, 5m).Each is uniformly charged with 1.2 nano-Coulombs. What is the magnitude of the electric field at a distance of 5.8 m from the center of the shells?

- -a) 1.096E+00 N/C
- -b) 1.206E+00 N/C
- -c) 1.327E+00 N/C
- -d) 1.459E+00 N/C
- +e) 1.605E+00 N/C

3) A non-conducting sphere of radius R=3.5 m has a non-uniform charge density that varies with the distnce from its center as given by ρ(r)=ar^{1.5} (r≤R) where a=2 nC·m^{-1.5}. What is the magnitude of the electric field at a distance of 2.2 m from the center?

- +a) 3.604E+02 N/C
- -b) 3.964E+02 N/C
- -c) 4.360E+02 N/C
- -d) 4.796E+02 N/C
- -e) 5.276E+02 N/C

### QB:Ch 6:V1[edit]

QB153099154193

1) A non-conducting sphere of radius R=3.3 m has a non-uniform charge density that varies with the distnce from its center as given by ρ(r)=ar^{1.4} (r≤R) where a=2 nC·m^{-1.6}. What is the magnitude of the electric field at a distance of 1.5 m from the center?

- a) 1.123E+02 N/C
- b) 1.235E+02 N/C
- c) 1.358E+02 N/C
- d) 1.494E+02 N/C
- e) 1.644E+02 N/C

2) Five concentric spherical shells have radius of exactly (1m, 2m, 3m, 4m, 5m).Each is uniformly charged with 1.2 nano-Coulombs. What is the magnitude of the electric field at a distance of 5.8 m from the center of the shells?

- a) 1.096E+00 N/C
- b) 1.206E+00 N/C
- c) 1.327E+00 N/C
- d) 1.459E+00 N/C
- e) 1.605E+00 N/C

_{1}=1.6 m. The other four surfaces are rectangles in y=y

_{0}=1.5 m, y=y

_{1}=4.4 m, z=z

_{0}=1.5 m, and z=z

_{1}=5.5 m. The surfaces in the yz plane each have area 12.0m

^{2}. Those in the xy plane have area 4.6m

^{2},and those in the zx plane have area 6.4m

^{2}. An electric field of magnitude 8 N/C has components in the y and z directions and is directed at 39° from the z-axis. What is the magnitude (absolute value) of the electric flux through a surface aligned parallel to the xz plane?

- a) 3.222E+01 N·m
^{2}/C - b) 3.544E+01 N·m
^{2}/C - c) 3.899E+01 N·m
^{2}/C - d) 4.289E+01 N·m
^{2}/C - e) 4.718E+01 N·m
^{2}/C

#### KEY:QB:Ch 6:V1[edit]

QB153099154193

1) A non-conducting sphere of radius R=3.3 m has a non-uniform charge density that varies with the distnce from its center as given by ρ(r)=ar^{1.4} (r≤R) where a=2 nC·m^{-1.6}. What is the magnitude of the electric field at a distance of 1.5 m from the center?

- -a) 1.123E+02 N/C
- -b) 1.235E+02 N/C
- +c) 1.358E+02 N/C
- -d) 1.494E+02 N/C
- -e) 1.644E+02 N/C

- -a) 1.096E+00 N/C
- -b) 1.206E+00 N/C
- -c) 1.327E+00 N/C
- -d) 1.459E+00 N/C
- +e) 1.605E+00 N/C

_{1}=1.6 m. The other four surfaces are rectangles in y=y

_{0}=1.5 m, y=y

_{1}=4.4 m, z=z

_{0}=1.5 m, and z=z

_{1}=5.5 m. The surfaces in the yz plane each have area 12.0m

^{2}. Those in the xy plane have area 4.6m

^{2},and those in the zx plane have area 6.4m

^{2}. An electric field of magnitude 8 N/C has components in the y and z directions and is directed at 39° from the z-axis. What is the magnitude (absolute value) of the electric flux through a surface aligned parallel to the xz plane?

- +a) 3.222E+01 N·m
^{2}/C - -b) 3.544E+01 N·m
^{2}/C - -c) 3.899E+01 N·m
^{2}/C - -d) 4.289E+01 N·m
^{2}/C - -e) 4.718E+01 N·m
^{2}/C

### QB:Ch 6:V2[edit]

QB153099154193

_{1}=2.8 m. The other four surfaces are rectangles in y=y

_{0}=1.4 m, y=y

_{1}=4.7 m, z=z

_{0}=1.8 m, and z=z

_{1}=4.7 m. The surfaces in the yz plane each have area 9.6m

^{2}. Those in the xy plane have area 9.2m

^{2},and those in the zx plane have area 8.1m

^{2}. An electric field of magnitude 6 N/C has components in the y and z directions and is directed at 32° from the z-axis. What is the magnitude (absolute value) of the electric flux through a surface aligned parallel to the xz plane?

- a) 2.134E+01 N·m
^{2}/C - b) 2.347E+01 N·m
^{2}/C - c) 2.582E+01 N·m
^{2}/C - d) 2.840E+01 N·m
^{2}/C - e) 3.124E+01 N·m
^{2}/C

2) A non-conducting sphere of radius R=3.8 m has a non-uniform charge density that varies with the distnce from its center as given by ρ(r)=ar^{1.5} (r≤R) where a=2 nC·m^{-1.5}. What is the magnitude of the electric field at a distance of 3.0 m from the center?

- a) 7.825E+02 N/C
- b) 8.607E+02 N/C
- c) 9.468E+02 N/C
- d) 1.041E+03 N/C
- e) 1.146E+03 N/C

3) Five concentric spherical shells have radius of exactly (1m, 2m, 3m, 4m, 5m).Each is uniformly charged with 1.2 nano-Coulombs. What is the magnitude of the electric field at a distance of 5.8 m from the center of the shells?

- a) 1.096E+00 N/C
- b) 1.206E+00 N/C
- c) 1.327E+00 N/C
- d) 1.459E+00 N/C
- e) 1.605E+00 N/C

#### KEY:QB:Ch 6:V2[edit]

QB153099154193

_{1}=2.8 m. The other four surfaces are rectangles in y=y

_{0}=1.4 m, y=y

_{1}=4.7 m, z=z

_{0}=1.8 m, and z=z

_{1}=4.7 m. The surfaces in the yz plane each have area 9.6m

^{2}. Those in the xy plane have area 9.2m

^{2},and those in the zx plane have area 8.1m

^{2}. An electric field of magnitude 6 N/C has components in the y and z directions and is directed at 32° from the z-axis. What is the magnitude (absolute value) of the electric flux through a surface aligned parallel to the xz plane?

- -a) 2.134E+01 N·m
^{2}/C - -b) 2.347E+01 N·m
^{2}/C - +c) 2.582E+01 N·m
^{2}/C - -d) 2.840E+01 N·m
^{2}/C - -e) 3.124E+01 N·m
^{2}/C

2) A non-conducting sphere of radius R=3.8 m has a non-uniform charge density that varies with the distnce from its center as given by ρ(r)=ar^{1.5} (r≤R) where a=2 nC·m^{-1.5}. What is the magnitude of the electric field at a distance of 3.0 m from the center?

- +a) 7.825E+02 N/C
- -b) 8.607E+02 N/C
- -c) 9.468E+02 N/C
- -d) 1.041E+03 N/C
- -e) 1.146E+03 N/C

3) Five concentric spherical shells have radius of exactly (1m, 2m, 3m, 4m, 5m).Each is uniformly charged with 1.2 nano-Coulombs. What is the magnitude of the electric field at a distance of 5.8 m from the center of the shells?

- -a) 1.096E+00 N/C
- -b) 1.206E+00 N/C
- -c) 1.327E+00 N/C
- -d) 1.459E+00 N/C
- +e) 1.605E+00 N/C

### QB:Ch 7:V0[edit]

QB153099154193

*a*=

*b*=4 cm.) The charges are q

_{1}=3 μC, q

_{2}=6 μC, q

_{3}=9 μC, and q

_{4}=11 μC. How much work was required to assemble these four charges from infinity?

- a) 4.554E+01 J
- b) 5.009E+01 J
- c) 5.510E+01 J
- d) 6.061E+01 J
- e) 6.667E+01 J

2) A 7 C charge is separated from a 12 C charge by distance of 9 cm. What is the work done by increasing this separation to 15 cm?

- a) 2.292E-06 J
- b) 2.521E-06 J
- c) 2.773E-06 J
- d) 3.050E-06 J
- e) 3.355E-06 J

3) Calculate the final speed of a free electron accelerated from rest through a potential difference of 69 V.

- a) 3.365E+06 m/s
- b) 3.701E+06 m/s
- c) 4.072E+06 m/s
- d) 4.479E+06 m/s
- e) 4.927E+06 m/s

#### KEY:QB:Ch 7:V0[edit]

QB153099154193

*a*=

*b*=4 cm.) The charges are q

_{1}=3 μC, q

_{2}=6 μC, q

_{3}=9 μC, and q

_{4}=11 μC. How much work was required to assemble these four charges from infinity?

- -a) 4.554E+01 J
- -b) 5.009E+01 J
- -c) 5.510E+01 J
- +d) 6.061E+01 J
- -e) 6.667E+01 J

2) A 7 C charge is separated from a 12 C charge by distance of 9 cm. What is the work done by increasing this separation to 15 cm?

- -a) 2.292E-06 J
- -b) 2.521E-06 J
- -c) 2.773E-06 J
- -d) 3.050E-06 J
- +e) 3.355E-06 J

3) Calculate the final speed of a free electron accelerated from rest through a potential difference of 69 V.

- -a) 3.365E+06 m/s
- -b) 3.701E+06 m/s
- -c) 4.072E+06 m/s
- -d) 4.479E+06 m/s
- +e) 4.927E+06 m/s

### QB:Ch 7:V1[edit]

QB153099154193

1) A 8 C charge is separated from a 12 C charge by distance of 9 cm. What is the work done by increasing this separation to 18 cm?

- a) 3.274E-06 J
- b) 3.601E-06 J
- c) 3.961E-06 J
- d) 4.358E-06 J
- e) 4.793E-06 J

*a*=

*b*=4 cm.) The charges are q

_{1}=3 μC, q

_{2}=6 μC, q

_{3}=7 μC, and q

_{4}=9 μC. How much work was required to assemble these four charges from infinity?

- a) 3.116E+01 J
- b) 3.427E+01 J
- c) 3.770E+01 J
- d) 4.147E+01 J
- e) 4.562E+01 J

3) Calculate the final speed of a free electron accelerated from rest through a potential difference of 81 V.

- a) 4.411E+06 m/s
- b) 4.853E+06 m/s
- c) 5.338E+06 m/s
- d) 5.872E+06 m/s
- e) 6.459E+06 m/s

#### KEY:QB:Ch 7:V1[edit]

QB153099154193

1) A 8 C charge is separated from a 12 C charge by distance of 9 cm. What is the work done by increasing this separation to 18 cm?

- -a) 3.274E-06 J
- -b) 3.601E-06 J
- -c) 3.961E-06 J
- -d) 4.358E-06 J
- +e) 4.793E-06 J

*a*=

*b*=4 cm.) The charges are q

_{1}=3 μC, q

_{2}=6 μC, q

_{3}=7 μC, and q

_{4}=9 μC. How much work was required to assemble these four charges from infinity?

- -a) 3.116E+01 J
- -b) 3.427E+01 J
- -c) 3.770E+01 J
- -d) 4.147E+01 J
- +e) 4.562E+01 J

3) Calculate the final speed of a free electron accelerated from rest through a potential difference of 81 V.

- -a) 4.411E+06 m/s
- -b) 4.853E+06 m/s
- +c) 5.338E+06 m/s
- -d) 5.872E+06 m/s
- -e) 6.459E+06 m/s

### QB:Ch 7:V2[edit]

QB153099154193

*a*=

*b*=4 cm.) The charges are q

_{1}=3 μC, q

_{2}=6 μC, q

_{3}=7 μC, and q

_{4}=10 μC. How much work was required to assemble these four charges from infinity?

- a) 4.438E+01 J
- b) 4.882E+01 J
- c) 5.370E+01 J
- d) 5.907E+01 J
- e) 6.498E+01 J

2) Calculate the final speed of a free electron accelerated from rest through a potential difference of 81 V.

- a) 4.411E+06 m/s
- b) 4.853E+06 m/s
- c) 5.338E+06 m/s
- d) 5.872E+06 m/s
- e) 6.459E+06 m/s

3) A 5 C charge is separated from a 12 C charge by distance of 10 cm. What is the work done by increasing this separation to 16 cm?

- a) 1.381E-06 J
- b) 1.519E-06 J
- c) 1.671E-06 J
- d) 1.838E-06 J
- e) 2.022E-06 J

#### KEY:QB:Ch 7:V2[edit]

QB153099154193

*a*=

*b*=4 cm.) The charges are q

_{1}=3 μC, q

_{2}=6 μC, q

_{3}=7 μC, and q

_{4}=10 μC. How much work was required to assemble these four charges from infinity?

- -a) 4.438E+01 J
- +b) 4.882E+01 J
- -c) 5.370E+01 J
- -d) 5.907E+01 J
- -e) 6.498E+01 J

2) Calculate the final speed of a free electron accelerated from rest through a potential difference of 81 V.

- -a) 4.411E+06 m/s
- -b) 4.853E+06 m/s
- +c) 5.338E+06 m/s
- -d) 5.872E+06 m/s
- -e) 6.459E+06 m/s

3) A 5 C charge is separated from a 12 C charge by distance of 10 cm. What is the work done by increasing this separation to 16 cm?

- -a) 1.381E-06 J
- -b) 1.519E-06 J
- -c) 1.671E-06 J
- -d) 1.838E-06 J
- +e) 2.022E-06 J

### QB:Ch 8:V0[edit]

QB153099154193

_{1}=17.1 μF, C

_{2}=2.87 μF, and C

_{3}=4.74 μF. The voltage source provides ε=6.63 V. What is the charge on C

_{1}?

- a) 2.385E+01 μC
- b) 2.623E+01 μC
- c) 2.886E+01 μC
- d) 3.174E+01 μC
- e) 3.492E+01 μC

2) An empty parallel-plate capacitor with metal plates has an area of 2.21 m^{2}, separated by 1.25 mm. How much charge does it store if the voltage is 1.580E+03 V?

- a) 2.249E+01 μC
- b) 2.473E+01 μC
- c) 2.721E+01 μC
- d) 2.993E+01 μC
- e) 3.292E+01 μC

_{1}=17.2 μF, C

_{2}=2.71 μF, and C

_{3}=5.28 μF. The voltage source provides ε=13.2 V. What is the energy stored in C

_{2}?

- a) 2.443E+01 μJ
- b) 2.687E+01 μJ
- c) 2.955E+01 μJ
- d) 3.251E+01 μJ
- e) 3.576E+01 μJ

#### KEY:QB:Ch 8:V0[edit]

QB153099154193

_{1}=17.1 μF, C

_{2}=2.87 μF, and C

_{3}=4.74 μF. The voltage source provides ε=6.63 V. What is the charge on C

_{1}?

- -a) 2.385E+01 μC
- -b) 2.623E+01 μC
- -c) 2.886E+01 μC
- -d) 3.174E+01 μC
- +e) 3.492E+01 μC

2) An empty parallel-plate capacitor with metal plates has an area of 2.21 m^{2}, separated by 1.25 mm. How much charge does it store if the voltage is 1.580E+03 V?

- -a) 2.249E+01 μC
- +b) 2.473E+01 μC
- -c) 2.721E+01 μC
- -d) 2.993E+01 μC
- -e) 3.292E+01 μC

_{1}=17.2 μF, C

_{2}=2.71 μF, and C

_{3}=5.28 μF. The voltage source provides ε=13.2 V. What is the energy stored in C

_{2}?

- +a) 2.443E+01 μJ
- -b) 2.687E+01 μJ
- -c) 2.955E+01 μJ
- -d) 3.251E+01 μJ
- -e) 3.576E+01 μJ

### QB:Ch 8:V1[edit]

QB153099154193

_{1}=17.8 μF, C

_{2}=2.22 μF, and C

_{3}=5.71 μF. The voltage source provides ε=13.9 V. What is the charge on C

_{1}?

- a) 7.625E+01 μC
- b) 8.388E+01 μC
- c) 9.227E+01 μC
- d) 1.015E+02 μC
- e) 1.116E+02 μC

_{1}=19.2 μF, C

_{2}=2.71 μF, and C

_{3}=5.52 μF. The voltage source provides ε=15.0 V. What is the energy stored in C

_{2}?

- a) 2.138E+01 μJ
- b) 2.352E+01 μJ
- c) 2.587E+01 μJ
- d) 2.845E+01 μJ
- e) 3.130E+01 μJ

3) An empty parallel-plate capacitor with metal plates has an area of 2.84 m^{2}, separated by 1.42 mm. How much charge does it store if the voltage is 1.510E+03 V?

- a) 1.826E+01 μC
- b) 2.009E+01 μC
- c) 2.210E+01 μC
- d) 2.431E+01 μC
- e) 2.674E+01 μC

#### KEY:QB:Ch 8:V1[edit]

QB153099154193

_{1}=17.8 μF, C

_{2}=2.22 μF, and C

_{3}=5.71 μF. The voltage source provides ε=13.9 V. What is the charge on C

_{1}?

- +a) 7.625E+01 μC
- -b) 8.388E+01 μC
- -c) 9.227E+01 μC
- -d) 1.015E+02 μC
- -e) 1.116E+02 μC

_{1}=19.2 μF, C

_{2}=2.71 μF, and C

_{3}=5.52 μF. The voltage source provides ε=15.0 V. What is the energy stored in C

_{2}?

- -a) 2.138E+01 μJ
- -b) 2.352E+01 μJ
- -c) 2.587E+01 μJ
- +d) 2.845E+01 μJ
- -e) 3.130E+01 μJ

3) An empty parallel-plate capacitor with metal plates has an area of 2.84 m^{2}, separated by 1.42 mm. How much charge does it store if the voltage is 1.510E+03 V?

- -a) 1.826E+01 μC
- -b) 2.009E+01 μC
- -c) 2.210E+01 μC
- -d) 2.431E+01 μC
- +e) 2.674E+01 μC

### QB:Ch 8:V2[edit]

QB153099154193

_{1}=17.2 μF, C

_{2}=2.71 μF, and C

_{3}=5.28 μF. The voltage source provides ε=13.2 V. What is the energy stored in C

_{2}?

- a) 2.443E+01 μJ
- b) 2.687E+01 μJ
- c) 2.955E+01 μJ
- d) 3.251E+01 μJ
- e) 3.576E+01 μJ

2) An empty parallel-plate capacitor with metal plates has an area of 2.66 m^{2}, separated by 1.18 mm. How much charge does it store if the voltage is 6.170E+03 V?

- a) 1.231E+02 μC
- b) 1.355E+02 μC
- c) 1.490E+02 μC
- d) 1.639E+02 μC
- e) 1.803E+02 μC

_{1}=15.0 μF, C

_{2}=2.65 μF, and C

_{3}=5.67 μF. The voltage source provides ε=7.44 V. What is the charge on C

_{1}?

- a) 3.982E+01 μC
- b) 4.380E+01 μC
- c) 4.818E+01 μC
- d) 5.300E+01 μC
- e) 5.829E+01 μC

#### KEY:QB:Ch 8:V2[edit]

QB153099154193

_{1}=17.2 μF, C

_{2}=2.71 μF, and C

_{3}=5.28 μF. The voltage source provides ε=13.2 V. What is the energy stored in C

_{2}?

- +a) 2.443E+01 μJ
- -b) 2.687E+01 μJ
- -c) 2.955E+01 μJ
- -d) 3.251E+01 μJ
- -e) 3.576E+01 μJ

2) An empty parallel-plate capacitor with metal plates has an area of 2.66 m^{2}, separated by 1.18 mm. How much charge does it store if the voltage is 6.170E+03 V?

- +a) 1.231E+02 μC
- -b) 1.355E+02 μC
- -c) 1.490E+02 μC
- -d) 1.639E+02 μC
- -e) 1.803E+02 μC

_{1}=15.0 μF, C

_{2}=2.65 μF, and C

_{3}=5.67 μF. The voltage source provides ε=7.44 V. What is the charge on C

_{1}?

- +a) 3.982E+01 μC
- -b) 4.380E+01 μC
- -c) 4.818E+01 μC
- -d) 5.300E+01 μC
- -e) 5.829E+01 μC

### QB:Ch 9:V0[edit]

QB153099154193

1) Calculate the drift speed of electrons in a copper wire with a diameter of 4.9 mm carrying a 6.43 A current, given that there is one free electron per copper atom. The density of copper is 8.80 x 10^{3}kg/m^{3} and the atomic mass of copper is 63.54 g/mol. Avagadro's number is 6.02 x 10^{23}atoms/mol.

- a) 2.109E-05 m/s
- b) 2.320E-05 m/s
- c) 2.552E-05 m/s
- d) 2.807E-05 m/s
- e) 3.088E-05 m/s

2) Calculate the resistance of a 12-gauge copper wire that is 48 m long and carries a current of 50 mA. The resistivity of copper is 1.680E-08 Ω·m and 12-gauge wire as a cross-sectional area of 3.31 mm^{2}.

- a) 2.215E-01 Ω
- b) 2.436E-01 Ω
- c) 2.680E-01 Ω
- d) 2.948E-01 Ω
- e) 3.243E-01 Ω

3) Imagine a substance could be made into a very hot filament. Suppose the resitance is 1.56 Ω at a temperature of 97°C and that the temperature coefficient of expansion is 5.020E-03 (°C)^{−1}). What is the resistance at a temperature of 340 °C?

- a) 3.463E+00 Ω
- b) 3.636E+00 Ω
- c) 3.818E+00 Ω
- d) 4.009E+00 Ω
- e) 4.209E+00 Ω

#### KEY:QB:Ch 9:V0[edit]

QB153099154193

1) Calculate the drift speed of electrons in a copper wire with a diameter of 4.9 mm carrying a 6.43 A current, given that there is one free electron per copper atom. The density of copper is 8.80 x 10^{3}kg/m^{3} and the atomic mass of copper is 63.54 g/mol. Avagadro's number is 6.02 x 10^{23}atoms/mol.

- -a) 2.109E-05 m/s
- -b) 2.320E-05 m/s
- +c) 2.552E-05 m/s
- -d) 2.807E-05 m/s
- -e) 3.088E-05 m/s

2) Calculate the resistance of a 12-gauge copper wire that is 48 m long and carries a current of 50 mA. The resistivity of copper is 1.680E-08 Ω·m and 12-gauge wire as a cross-sectional area of 3.31 mm^{2}.

- -a) 2.215E-01 Ω
- +b) 2.436E-01 Ω
- -c) 2.680E-01 Ω
- -d) 2.948E-01 Ω
- -e) 3.243E-01 Ω

3) Imagine a substance could be made into a very hot filament. Suppose the resitance is 1.56 Ω at a temperature of 97°C and that the temperature coefficient of expansion is 5.020E-03 (°C)^{−1}). What is the resistance at a temperature of 340 °C?

- +a) 3.463E+00 Ω
- -b) 3.636E+00 Ω
- -c) 3.818E+00 Ω
- -d) 4.009E+00 Ω
- -e) 4.209E+00 Ω

### QB:Ch 9:V1[edit]

QB153099154193

1) Calculate the resistance of a 12-gauge copper wire that is 69 m long and carries a current of 98 mA. The resistivity of copper is 1.680E-08 Ω·m and 12-gauge wire as a cross-sectional area of 3.31 mm^{2}.

- a) 2.631E-01 Ω
- b) 2.894E-01 Ω
- c) 3.184E-01 Ω
- d) 3.502E-01 Ω
- e) 3.852E-01 Ω

2) Imagine a substance could be made into a very hot filament. Suppose the resitance is 1.52 Ω at a temperature of 45°C and that the temperature coefficient of expansion is 4.330E-03 (°C)^{−1}). What is the resistance at a temperature of 479 °C?

- a) 3.970E+00 Ω
- b) 4.168E+00 Ω
- c) 4.376E+00 Ω
- d) 4.595E+00 Ω
- e) 4.825E+00 Ω

3) Calculate the drift speed of electrons in a copper wire with a diameter of 5.46 mm carrying a 5.05 A current, given that there is one free electron per copper atom. The density of copper is 8.80 x 10^{3}kg/m^{3} and the atomic mass of copper is 63.54 g/mol. Avagadro's number is 6.02 x 10^{23}atoms/mol.

- a) 1.614E-05 m/s
- b) 1.776E-05 m/s
- c) 1.953E-05 m/s
- d) 2.149E-05 m/s
- e) 2.363E-05 m/s

#### KEY:QB:Ch 9:V1[edit]

QB153099154193

1) Calculate the resistance of a 12-gauge copper wire that is 69 m long and carries a current of 98 mA. The resistivity of copper is 1.680E-08 Ω·m and 12-gauge wire as a cross-sectional area of 3.31 mm^{2}.

- -a) 2.631E-01 Ω
- -b) 2.894E-01 Ω
- -c) 3.184E-01 Ω
- +d) 3.502E-01 Ω
- -e) 3.852E-01 Ω

2) Imagine a substance could be made into a very hot filament. Suppose the resitance is 1.52 Ω at a temperature of 45°C and that the temperature coefficient of expansion is 4.330E-03 (°C)^{−1}). What is the resistance at a temperature of 479 °C?

- -a) 3.970E+00 Ω
- -b) 4.168E+00 Ω
- +c) 4.376E+00 Ω
- -d) 4.595E+00 Ω
- -e) 4.825E+00 Ω

3) Calculate the drift speed of electrons in a copper wire with a diameter of 5.46 mm carrying a 5.05 A current, given that there is one free electron per copper atom. The density of copper is 8.80 x 10^{3}kg/m^{3} and the atomic mass of copper is 63.54 g/mol. Avagadro's number is 6.02 x 10^{23}atoms/mol.

- +a) 1.614E-05 m/s
- -b) 1.776E-05 m/s
- -c) 1.953E-05 m/s
- -d) 2.149E-05 m/s
- -e) 2.363E-05 m/s

### QB:Ch 9:V2[edit]

QB153099154193

1) Calculate the resistance of a 12-gauge copper wire that is 69 m long and carries a current of 98 mA. The resistivity of copper is 1.680E-08 Ω·m and 12-gauge wire as a cross-sectional area of 3.31 mm^{2}.

- a) 2.631E-01 Ω
- b) 2.894E-01 Ω
- c) 3.184E-01 Ω
- d) 3.502E-01 Ω
- e) 3.852E-01 Ω

2) Imagine a substance could be made into a very hot filament. Suppose the resitance is 2.94 Ω at a temperature of 30°C and that the temperature coefficient of expansion is 5.900E-03 (°C)^{−1}). What is the resistance at a temperature of 445 °C?

- a) 1.014E+01 Ω
- b) 1.065E+01 Ω
- c) 1.118E+01 Ω
- d) 1.174E+01 Ω
- e) 1.232E+01 Ω

3) Calculate the drift speed of electrons in a copper wire with a diameter of 5.71 mm carrying a 7.54 A current, given that there is one free electron per copper atom. The density of copper is 8.80 x 10^{3}kg/m^{3} and the atomic mass of copper is 63.54 g/mol. Avagadro's number is 6.02 x 10^{23}atoms/mol.

- a) 2.204E-05 m/s
- b) 2.424E-05 m/s
- c) 2.667E-05 m/s
- d) 2.933E-05 m/s
- e) 3.227E-05 m/s

#### KEY:QB:Ch 9:V2[edit]

QB153099154193

^{2}.

- -a) 2.631E-01 Ω
- -b) 2.894E-01 Ω
- -c) 3.184E-01 Ω
- +d) 3.502E-01 Ω
- -e) 3.852E-01 Ω

2) Imagine a substance could be made into a very hot filament. Suppose the resitance is 2.94 Ω at a temperature of 30°C and that the temperature coefficient of expansion is 5.900E-03 (°C)^{−1}). What is the resistance at a temperature of 445 °C?

- +a) 1.014E+01 Ω
- -b) 1.065E+01 Ω
- -c) 1.118E+01 Ω
- -d) 1.174E+01 Ω
- -e) 1.232E+01 Ω

3) Calculate the drift speed of electrons in a copper wire with a diameter of 5.71 mm carrying a 7.54 A current, given that there is one free electron per copper atom. The density of copper is 8.80 x 10^{3}kg/m^{3} and the atomic mass of copper is 63.54 g/mol. Avagadro's number is 6.02 x 10^{23}atoms/mol.

- +a) 2.204E-05 m/s
- -b) 2.424E-05 m/s
- -c) 2.667E-05 m/s
- -d) 2.933E-05 m/s
- -e) 3.227E-05 m/s

### QB:Ch 10:V0[edit]

QB153099154193

_{1}= 2.41 Ω, R

_{2}= 1.74 Ω, and R

_{2}= 3.35 Ω. V

_{1}and V

_{3}are text 0.508 V and 1.36 V, respectively. But V

_{2}is opposite to that shown in the figure, or, equivalently, V

_{2}=−0.595 V. What is the absolute value of the current through R

_{1}?

- a) 1.203E-01 A
- b) 1.324E-01 A
- c) 1.456E-01 A
- d) 1.602E-01 A
- e) 1.762E-01 A

_{1}=2.27 Ω, R

_{2}=6.79 Ω, and R

_{3}=15.1 Ω. What is the power dissipated by R

_{2}?

- a) 1.446E+01 W
- b) 1.591E+01 W
- c) 1.750E+01 W
- d) 1.925E+01 W
- e) 2.117E+01 W

_{1}=67.2 V, and ε

_{2}=18.7 V are oriented as shownin the circuit. The resistances are R

_{1}=3.45 kΩ and R

_{2}=1.2 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I

_{3}=9.49 mA and I

_{4}=1.81 mA enter and leave near R

_{2}, while the current I

_{5}exits near R

_{1}.What is the magnitude (absolute value) of voltage drop across R

_{2}?

- a) 1.906E+01 V
- b) 2.097E+01 V
- c) 2.306E+01 V
- d) 2.537E+01 V
- e) 2.790E+01 V

#### KEY:QB:Ch 10:V0[edit]

QB153099154193

_{1}= 2.41 Ω, R

_{2}= 1.74 Ω, and R

_{2}= 3.35 Ω. V

_{1}and V

_{3}are text 0.508 V and 1.36 V, respectively. But V

_{2}is opposite to that shown in the figure, or, equivalently, V

_{2}=−0.595 V. What is the absolute value of the current through R

_{1}?

- -a) 1.203E-01 A
- -b) 1.324E-01 A
- +c) 1.456E-01 A
- -d) 1.602E-01 A
- -e) 1.762E-01 A

_{1}=2.27 Ω, R

_{2}=6.79 Ω, and R

_{3}=15.1 Ω. What is the power dissipated by R

_{2}?

- -a) 1.446E+01 W
- -b) 1.591E+01 W
- -c) 1.750E+01 W
- -d) 1.925E+01 W
- +e) 2.117E+01 W

_{1}=67.2 V, and ε

_{2}=18.7 V are oriented as shownin the circuit. The resistances are R

_{1}=3.45 kΩ and R

_{2}=1.2 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I

_{3}=9.49 mA and I

_{4}=1.81 mA enter and leave near R

_{2}, while the current I

_{5}exits near R

_{1}.What is the magnitude (absolute value) of voltage drop across R

_{2}?

- -a) 1.906E+01 V
- +b) 2.097E+01 V
- -c) 2.306E+01 V
- -d) 2.537E+01 V
- -e) 2.790E+01 V

### QB:Ch 10:V1[edit]

QB153099154193

_{1}=36.7 V, and ε

_{2}=13.6 V are oriented as shownin the circuit. The resistances are R

_{1}=2.86 kΩ and R

_{2}=2.2 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I

_{3}=3.02 mA and I

_{4}=0.854 mA enter and leave near R

_{2}, while the current I

_{5}exits near R

_{1}.What is the magnitude (absolute value) of voltage drop across R

_{2}?

- a) 1.380E+01 V
- b) 1.518E+01 V
- c) 1.670E+01 V
- d) 1.837E+01 V
- e) 2.020E+01 V

_{1}=2.38 Ω, R

_{2}=5.11 Ω, and R

_{3}=14.6 Ω. What is the power dissipated by R

_{2}?

- a) 8.489E+00 W
- b) 9.338E+00 W
- c) 1.027E+01 W
- d) 1.130E+01 W
- e) 1.243E+01 W

_{1}= 2.42 Ω, R

_{2}= 1.09 Ω, and R

_{2}= 3.89 Ω. V

_{1}and V

_{3}are text 0.677 V and 1.86 V, respectively. But V

_{2}is opposite to that shown in the figure, or, equivalently, V

_{2}=−0.745 V. What is the absolute value of the current through R

_{1}?

- a) 2.089E-01 A
- b) 2.298E-01 A
- c) 2.528E-01 A
- d) 2.781E-01 A
- e) 3.059E-01 A

#### KEY:QB:Ch 10:V1[edit]

QB153099154193

_{1}=36.7 V, and ε

_{2}=13.6 V are oriented as shownin the circuit. The resistances are R

_{1}=2.86 kΩ and R

_{2}=2.2 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I

_{3}=3.02 mA and I

_{4}=0.854 mA enter and leave near R

_{2}, while the current I

_{5}exits near R

_{1}.What is the magnitude (absolute value) of voltage drop across R

_{2}?

- +a) 1.380E+01 V
- -b) 1.518E+01 V
- -c) 1.670E+01 V
- -d) 1.837E+01 V
- -e) 2.020E+01 V

_{1}=2.38 Ω, R

_{2}=5.11 Ω, and R

_{3}=14.6 Ω. What is the power dissipated by R

_{2}?

- -a) 8.489E+00 W
- -b) 9.338E+00 W
- +c) 1.027E+01 W
- -d) 1.130E+01 W
- -e) 1.243E+01 W

_{1}= 2.42 Ω, R

_{2}= 1.09 Ω, and R

_{2}= 3.89 Ω. V

_{1}and V

_{3}are text 0.677 V and 1.86 V, respectively. But V

_{2}is opposite to that shown in the figure, or, equivalently, V

_{2}=−0.745 V. What is the absolute value of the current through R

_{1}?

- -a) 2.089E-01 A
- -b) 2.298E-01 A
- +c) 2.528E-01 A
- -d) 2.781E-01 A
- -e) 3.059E-01 A

### QB:Ch 10:V2[edit]

QB153099154193

_{1}=40.9 V, and ε

_{2}=16.1 V are oriented as shownin the circuit. The resistances are R

_{1}=5.55 kΩ and R

_{2}=1.55 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I

_{3}=6.11 mA and I

_{4}=1.06 mA enter and leave near R

_{2}, while the current I

_{5}exits near R

_{1}.What is the magnitude (absolute value) of voltage drop across R

_{2}?

- a) 8.754E+00 V
- b) 9.630E+00 V
- c) 1.059E+01 V
- d) 1.165E+01 V
- e) 1.282E+01 V

_{1}=1.3 Ω, R

_{2}=5.1 Ω, and R

_{3}=12.1 Ω. What is the power dissipated by R

_{2}?

- a) 2.543E+01 W
- b) 2.798E+01 W
- c) 3.077E+01 W
- d) 3.385E+01 W
- e) 3.724E+01 W

_{1}= 1.81 Ω, R

_{2}= 1.18 Ω, and R

_{2}= 2.62 Ω. V

_{1}and V

_{3}are text 0.628 V and 2.54 V, respectively. But V

_{2}is opposite to that shown in the figure, or, equivalently, V

_{2}=−0.748 V. What is the absolute value of the current through R

_{1}?

- a) 1.552E-01 A
- b) 1.707E-01 A
- c) 1.878E-01 A
- d) 2.065E-01 A
- e) 2.272E-01 A

#### KEY:QB:Ch 10:V2[edit]

QB153099154193

_{1}=40.9 V, and ε

_{2}=16.1 V are oriented as shownin the circuit. The resistances are R

_{1}=5.55 kΩ and R

_{2}=1.55 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I

_{3}=6.11 mA and I

_{4}=1.06 mA enter and leave near R

_{2}, while the current I

_{5}exits near R

_{1}.What is the magnitude (absolute value) of voltage drop across R

_{2}?

- -a) 8.754E+00 V
- -b) 9.630E+00 V
- -c) 1.059E+01 V
- -d) 1.165E+01 V
- +e) 1.282E+01 V

_{1}=1.3 Ω, R

_{2}=5.1 Ω, and R

_{3}=12.1 Ω. What is the power dissipated by R

_{2}?

- -a) 2.543E+01 W
- -b) 2.798E+01 W
- -c) 3.077E+01 W
- +d) 3.385E+01 W
- -e) 3.724E+01 W

_{1}= 1.81 Ω, R

_{2}= 1.18 Ω, and R

_{2}= 2.62 Ω. V

_{1}and V

_{3}are text 0.628 V and 2.54 V, respectively. But V

_{2}is opposite to that shown in the figure, or, equivalently, V

_{2}=−0.748 V. What is the absolute value of the current through R

_{1}?

- -a) 1.552E-01 A
- -b) 1.707E-01 A
- -c) 1.878E-01 A
- -d) 2.065E-01 A
- +e) 2.272E-01 A

### QB:Ch 11:V0[edit]

QB153099154193

1) A cyclotron used to accelerate alpha particlesm=6.64 x 10^{−27}kg, q=3.2 x 10^{−19}C) has a radius of 0.157 m and a magneticfield of 1.03 T. What is their maximum kinetic energy?

- a) 8.608E-01 MeV
- b) 9.468E-01 MeV
- c) 1.042E+00 MeV
- d) 1.146E+00 MeV
- e) 1.260E+00 MeV

2) An alpha-particle (q=3.2x10^{−19}C) moves through a uniform magnetic field that is parallel to the positive z-axis with magnitude 8.55 T. What is the x-component of the force on the alpha-particle if it is moving with a velocity

(1.96 **i** + 1.68 **j** + 6.92 **k**) x 10^{4} m/s?

- a) 4.179E-14 N
- b) 4.596E-14 N
- c) 5.056E-14 N
- d) 5.562E-14 N
- e) 6.118E-14 N

3) A charged particle in a magnetic field of 3.410E-04 T is moving perpendicular to the magnetic field with a speed of 5.010E+05 m/s. What is the period of orbit if orbital radius is 0.508 m?

- a) 5.792E-06 s
- b) 6.371E-06 s
- c) 7.008E-06 s
- d) 7.709E-06 s
- e) 8.480E-06 s

#### KEY:QB:Ch 11:V0[edit]

QB153099154193

1) A cyclotron used to accelerate alpha particlesm=6.64 x 10^{−27}kg, q=3.2 x 10^{−19}C) has a radius of 0.157 m and a magneticfield of 1.03 T. What is their maximum kinetic energy?

- -a) 8.608E-01 MeV
- -b) 9.468E-01 MeV
- -c) 1.042E+00 MeV
- -d) 1.146E+00 MeV
- +e) 1.260E+00 MeV

2) An alpha-particle (q=3.2x10^{−19}C) moves through a uniform magnetic field that is parallel to the positive z-axis with magnitude 8.55 T. What is the x-component of the force on the alpha-particle if it is moving with a velocity

(1.96 **i** + 1.68 **j** + 6.92 **k**) x 10^{4} m/s?

- -a) 4.179E-14 N
- +b) 4.596E-14 N
- -c) 5.056E-14 N
- -d) 5.562E-14 N
- -e) 6.118E-14 N

3) A charged particle in a magnetic field of 3.410E-04 T is moving perpendicular to the magnetic field with a speed of 5.010E+05 m/s. What is the period of orbit if orbital radius is 0.508 m?

- -a) 5.792E-06 s
- +b) 6.371E-06 s
- -c) 7.008E-06 s
- -d) 7.709E-06 s
- -e) 8.480E-06 s

### QB:Ch 11:V1[edit]

QB153099154193

1) An alpha-particle (q=3.2x10^{−19}C) moves through a uniform magnetic field that is parallel to the positive z-axis with magnitude 5.75 T. What is the x-component of the force on the alpha-particle if it is moving with a velocity

(1.81 **i** + 2.05 **j** + 4.49 **k**) x 10^{4} m/s?

- a) 2.576E-14 N
- b) 2.834E-14 N
- c) 3.117E-14 N
- d) 3.429E-14 N
- e) 3.772E-14 N

2) A cyclotron used to accelerate alpha particlesm=6.64 x 10^{−27}kg, q=3.2 x 10^{−19}C) has a radius of 0.436 m and a magneticfield of 0.881 T. What is their maximum kinetic energy?

- a) 5.342E+00 MeV
- b) 5.877E+00 MeV
- c) 6.464E+00 MeV
- d) 7.111E+00 MeV
- e) 7.822E+00 MeV

3) A charged particle in a magnetic field of 5.500E-04 T is moving perpendicular to the magnetic field with a speed of 2.930E+05 m/s. What is the period of orbit if orbital radius is 0.787 m?

- a) 1.688E-05 s
- b) 1.856E-05 s
- c) 2.042E-05 s
- d) 2.246E-05 s
- e) 2.471E-05 s

#### KEY:QB:Ch 11:V1[edit]

QB153099154193

1) An alpha-particle (q=3.2x10^{−19}C) moves through a uniform magnetic field that is parallel to the positive z-axis with magnitude 5.75 T. What is the x-component of the force on the alpha-particle if it is moving with a velocity

(1.81 **i** + 2.05 **j** + 4.49 **k**) x 10^{4} m/s?

- -a) 2.576E-14 N
- -b) 2.834E-14 N
- -c) 3.117E-14 N
- -d) 3.429E-14 N
- +e) 3.772E-14 N

2) A cyclotron used to accelerate alpha particlesm=6.64 x 10^{−27}kg, q=3.2 x 10^{−19}C) has a radius of 0.436 m and a magneticfield of 0.881 T. What is their maximum kinetic energy?

- -a) 5.342E+00 MeV
- -b) 5.877E+00 MeV
- -c) 6.464E+00 MeV
- +d) 7.111E+00 MeV
- -e) 7.822E+00 MeV

3) A charged particle in a magnetic field of 5.500E-04 T is moving perpendicular to the magnetic field with a speed of 2.930E+05 m/s. What is the period of orbit if orbital radius is 0.787 m?

- +a) 1.688E-05 s
- -b) 1.856E-05 s
- -c) 2.042E-05 s
- -d) 2.246E-05 s
- -e) 2.471E-05 s

### QB:Ch 11:V2[edit]

QB153099154193

1) An alpha-particle (q=3.2x10^{−19}C) moves through a uniform magnetic field that is parallel to the positive z-axis with magnitude 3.41 T. What is the x-component of the force on the alpha-particle if it is moving with a velocity

(6.21 **i** + 5.39 **j** + 3.81 **k**) x 10^{4} m/s?

- a) 4.419E-14 N
- b) 4.861E-14 N
- c) 5.347E-14 N
- d) 5.882E-14 N
- e) 6.470E-14 N

2) A cyclotron used to accelerate alpha particlesm=6.64 x 10^{−27}kg, q=3.2 x 10^{−19}C) has a radius of 0.125 m and a magneticfield of 0.932 T. What is their maximum kinetic energy?

- a) 4.914E-01 MeV
- b) 5.406E-01 MeV
- c) 5.946E-01 MeV
- d) 6.541E-01 MeV
- e) 7.195E-01 MeV

3) A charged particle in a magnetic field of 2.750E-04 T is moving perpendicular to the magnetic field with a speed of 2.120E+05 m/s. What is the period of orbit if orbital radius is 0.385 m?

- a) 1.141E-05 s
- b) 1.255E-05 s
- c) 1.381E-05 s
- d) 1.519E-05 s
- e) 1.671E-05 s

#### KEY:QB:Ch 11:V2[edit]

QB153099154193

1) An alpha-particle (q=3.2x10^{−19}C) moves through a uniform magnetic field that is parallel to the positive z-axis with magnitude 3.41 T. What is the x-component of the force on the alpha-particle if it is moving with a velocity

(6.21 **i** + 5.39 **j** + 3.81 **k**) x 10^{4} m/s?

- -a) 4.419E-14 N
- -b) 4.861E-14 N
- -c) 5.347E-14 N
- +d) 5.882E-14 N
- -e) 6.470E-14 N

2) A cyclotron used to accelerate alpha particlesm=6.64 x 10^{−27}kg, q=3.2 x 10^{−19}C) has a radius of 0.125 m and a magneticfield of 0.932 T. What is their maximum kinetic energy?

- -a) 4.914E-01 MeV
- -b) 5.406E-01 MeV
- -c) 5.946E-01 MeV
- +d) 6.541E-01 MeV
- -e) 7.195E-01 MeV

3) A charged particle in a magnetic field of 2.750E-04 T is moving perpendicular to the magnetic field with a speed of 2.120E+05 m/s. What is the period of orbit if orbital radius is 0.385 m?

- +a) 1.141E-05 s
- -b) 1.255E-05 s
- -c) 1.381E-05 s
- -d) 1.519E-05 s
- -e) 1.671E-05 s

### QB:Ch 12:V0[edit]

QB153099154193

1) Under most conditions the current is distributed uniformly over the cross section of the wire. What is the magnetic field 3.33 mm from the center of a wire of radius 5 mm if the current is 1A?

- a) 2.202E-05 T
- b) 2.422E-05 T
- c) 2.664E-05 T
- d) 2.930E-05 T
- e) 3.223E-05 T

_{1}and I

_{3}flow out of the page, and I

_{2}flows into the page, as shown. Two closed paths are shown, labeled and . If I

_{1}=2.42 kA, I

_{2}=0.904 kA, and I

_{3}=1.34 kA, take the path and evalulate the line integral,

:

- a) 2.696E-03 T-m
- b) 2.966E-03 T-m
- c) 3.263E-03 T-m
- d) 3.589E-03 T-m
- e) 3.948E-03 T-m

3) Two loops of wire carry the same current of 24 kA, and flow in the same direction. They share a common axis and orientation. One loop has a radius of 0.53 m while the other has a radius of 1.38 m. What is the magnitude of the magnetic field at a point on the axis of both loops, situated between the loops at a distance 0.485 m from the first (smaller) loopif the disance between the loops is 1.78 m?

- a) 1.294E-02 T
- b) 1.424E-02 T
- c) 1.566E-02 T
- d) 1.723E-02 T
- e) 1.895E-02 T

#### KEY:QB:Ch 12:V0[edit]

QB153099154193

1) Under most conditions the current is distributed uniformly over the cross section of the wire. What is the magnetic field 3.33 mm from the center of a wire of radius 5 mm if the current is 1A?

- -a) 2.202E-05 T
- -b) 2.422E-05 T
- +c) 2.664E-05 T
- -d) 2.930E-05 T
- -e) 3.223E-05 T

_{1}and I

_{3}flow out of the page, and I

_{2}flows into the page, as shown. Two closed paths are shown, labeled and . If I

_{1}=2.42 kA, I

_{2}=0.904 kA, and I

_{3}=1.34 kA, take the path and evalulate the line integral,

:

- -a) 2.696E-03 T-m
- -b) 2.966E-03 T-m
- -c) 3.263E-03 T-m
- +d) 3.589E-03 T-m
- -e) 3.948E-03 T-m

3) Two loops of wire carry the same current of 24 kA, and flow in the same direction. They share a common axis and orientation. One loop has a radius of 0.53 m while the other has a radius of 1.38 m. What is the magnitude of the magnetic field at a point on the axis of both loops, situated between the loops at a distance 0.485 m from the first (smaller) loopif the disance between the loops is 1.78 m?

- -a) 1.294E-02 T
- -b) 1.424E-02 T
- +c) 1.566E-02 T
- -d) 1.723E-02 T
- -e) 1.895E-02 T

### QB:Ch 12:V1[edit]

QB153099154193

1) Under most conditions the current is distributed uniformly over the cross section of the wire. What is the magnetic field 1.03 mm from the center of a wire of radius 3 mm if the current is 1A?

- a) 1.720E-05 T
- b) 1.892E-05 T
- c) 2.081E-05 T
- d) 2.289E-05 T
- e) 2.518E-05 T

2) Two loops of wire carry the same current of 21 kA, and flow in the same direction. They share a common axis and orientation. One loop has a radius of 0.753 m while the other has a radius of 1.47 m. What is the magnitude of the magnetic field at a point on the axis of both loops, situated between the loops at a distance 0.406 m from the first (smaller) loopif the disance between the loops is 1.38 m?

- a) 1.559E-02 T
- b) 1.715E-02 T
- c) 1.886E-02 T
- d) 2.075E-02 T
- e) 2.283E-02 T

_{1}and I

_{3}flow out of the page, and I

_{2}flows into the page, as shown. Two closed paths are shown, labeled and . If I

_{1}=2.58 kA, I

_{2}=1.27 kA, and I

_{3}=1.99 kA, take the path and evalulate the line integral,

:

- a) 3.770E-03 T-m
- b) 4.147E-03 T-m
- c) 4.562E-03 T-m
- d) 5.018E-03 T-m
- e) 5.520E-03 T-m

#### KEY:QB:Ch 12:V1[edit]

QB153099154193

1) Under most conditions the current is distributed uniformly over the cross section of the wire. What is the magnetic field 1.03 mm from the center of a wire of radius 3 mm if the current is 1A?

- -a) 1.720E-05 T
- -b) 1.892E-05 T
- -c) 2.081E-05 T
- +d) 2.289E-05 T
- -e) 2.518E-05 T

2) Two loops of wire carry the same current of 21 kA, and flow in the same direction. They share a common axis and orientation. One loop has a radius of 0.753 m while the other has a radius of 1.47 m. What is the magnitude of the magnetic field at a point on the axis of both loops, situated between the loops at a distance 0.406 m from the first (smaller) loopif the disance between the loops is 1.38 m?

- -a) 1.559E-02 T
- +b) 1.715E-02 T
- -c) 1.886E-02 T
- -d) 2.075E-02 T
- -e) 2.283E-02 T

_{1}and I

_{3}flow out of the page, and I

_{2}flows into the page, as shown. Two closed paths are shown, labeled and . If I

_{1}=2.58 kA, I

_{2}=1.27 kA, and I

_{3}=1.99 kA, take the path and evalulate the line integral,

:

- -a) 3.770E-03 T-m
- +b) 4.147E-03 T-m
- -c) 4.562E-03 T-m
- -d) 5.018E-03 T-m
- -e) 5.520E-03 T-m

### QB:Ch 12:V2[edit]

QB153099154193

1) Under most conditions the current is distributed uniformly over the cross section of the wire. What is the magnetic field 1.86 mm from the center of a wire of radius 5 mm if the current is 1A?

- a) 1.488E-05 T
- b) 1.637E-05 T
- c) 1.800E-05 T
- d) 1.981E-05 T
- e) 2.179E-05 T

2) Two loops of wire carry the same current of 64 kA, and flow in the same direction. They share a common axis and orientation. One loop has a radius of 0.838 m while the other has a radius of 1.17 m. What is the magnitude of the magnetic field at a point on the axis of both loops, situated between the loops at a distance 0.528 m from the first (smaller) loopif the disance between the loops is 1.62 m?

- a) 3.863E-02 T
- b) 4.249E-02 T
- c) 4.674E-02 T
- d) 5.141E-02 T
- e) 5.655E-02 T

_{1}and I

_{3}flow out of the page, and I

_{2}flows into the page, as shown. Two closed paths are shown, labeled and . If I

_{1}=2.5 kA, I

_{2}=1.28 kA, and I

_{3}=3.4 kA, take the path and evalulate the line integral,

:

- a) 4.362E-03 T-m
- b) 4.798E-03 T-m
- c) 5.278E-03 T-m
- d) 5.806E-03 T-m
- e) 6.386E-03 T-m

#### KEY:QB:Ch 12:V2[edit]

QB153099154193

1) Under most conditions the current is distributed uniformly over the cross section of the wire. What is the magnetic field 1.86 mm from the center of a wire of radius 5 mm if the current is 1A?

- +a) 1.488E-05 T
- -b) 1.637E-05 T
- -c) 1.800E-05 T
- -d) 1.981E-05 T
- -e) 2.179E-05 T

2) Two loops of wire carry the same current of 64 kA, and flow in the same direction. They share a common axis and orientation. One loop has a radius of 0.838 m while the other has a radius of 1.17 m. What is the magnitude of the magnetic field at a point on the axis of both loops, situated between the loops at a distance 0.528 m from the first (smaller) loopif the disance between the loops is 1.62 m?

- -a) 3.863E-02 T
- +b) 4.249E-02 T
- -c) 4.674E-02 T
- -d) 5.141E-02 T
- -e) 5.655E-02 T

_{1}and I

_{3}flow out of the page, and I

_{2}flows into the page, as shown. Two closed paths are shown, labeled and . If I

_{1}=2.5 kA, I

_{2}=1.28 kA, and I

_{3}=3.4 kA, take the path and evalulate the line integral,

:

- -a) 4.362E-03 T-m
- -b) 4.798E-03 T-m
- -c) 5.278E-03 T-m
- +d) 5.806E-03 T-m
- -e) 6.386E-03 T-m

### QB:Ch 13:V0[edit]

QB153099154193

--(

*Answer & Why this question is different.*)

- a) 5.308E+01 cm
^{3}/s - b) 5.839E+01 cm
^{3}/s - c) 6.422E+01 cm
^{3}/s - d) 7.065E+01 cm
^{3}/s - e) 7.771E+01 cm
^{3}/s

2) A square coil has sides that are L= 0.325 m long and is tightly wound with N=697 turns of wire. The resistance of the coil is R=4.87 Ω. The coil is placed in a spacially uniform magnetic field that is directed perpendicular to the face of the coil and whose magnitude is increasing at a rate dB/dt=0.0842 T/s. If R represents the only impedance of the coil, what is the magnitude of the current circulting through it?

- a) 1.157E+00 A
- b) 1.273E+00 A
- c) 1.400E+00 A
- d) 1.540E+00 A
- e) 1.694E+00 A

3) A time dependent magnetic field is directed perpendicular to the plane of a circular coil with a radius of 0.8 m. The magnetic field is spatially uniform but decays in time according to , where 8.91 s. What is the current in the coil if the impedance of the coil is 61.7 Ω?

- a) 5.369E-01 A
- b) 5.906E-01 A
- c) 6.496E-01 A
- d) 7.146E-01 A
- e) 7.860E-01 A

#### KEY:QB:Ch 13:V0[edit]

QB153099154193

--(

*Answer & Why this question is different.*)

- -a) 5.308E+01 cm
^{3}/s - +b) 5.839E+01 cm
^{3}/s - -c) 6.422E+01 cm
^{3}/s - -d) 7.065E+01 cm
^{3}/s - -e) 7.771E+01 cm
^{3}/s

2) A square coil has sides that are L= 0.325 m long and is tightly wound with N=697 turns of wire. The resistance of the coil is R=4.87 Ω. The coil is placed in a spacially uniform magnetic field that is directed perpendicular to the face of the coil and whose magnitude is increasing at a rate dB/dt=0.0842 T/s. If R represents the only impedance of the coil, what is the magnitude of the current circulting through it?

- -a) 1.157E+00 A
- +b) 1.273E+00 A
- -c) 1.400E+00 A
- -d) 1.540E+00 A
- -e) 1.694E+00 A

3) A time dependent magnetic field is directed perpendicular to the plane of a circular coil with a radius of 0.8 m. The magnetic field is spatially uniform but decays in time according to , where 8.91 s. What is the current in the coil if the impedance of the coil is 61.7 Ω?

- -a) 5.369E-01 A
- -b) 5.906E-01 A
- -c) 6.496E-01 A
- -d) 7.146E-01 A
- +e) 7.860E-01 A

### QB:Ch 13:V1[edit]

QB153099154193

1) A time dependent magnetic field is directed perpendicular to the plane of a circular coil with a radius of 0.798 m. The magnetic field is spatially uniform but decays in time according to , where 4.63 s. What is the current in the coil if the impedance of the coil is 75.7 Ω?

- a) 2.651E-01 A
- b) 2.917E-01 A
- c) 3.208E-01 A
- d) 3.529E-01 A
- e) 3.882E-01 A

2) A square coil has sides that are L= 0.259 m long and is tightly wound with N=628 turns of wire. The resistance of the coil is R=6.51 Ω. The coil is placed in a spacially uniform magnetic field that is directed perpendicular to the face of the coil and whose magnitude is increasing at a rate dB/dt=0.0372 T/s. If R represents the only impedance of the coil, what is the magnitude of the current circulting through it?

- a) 1.809E-01 A
- b) 1.989E-01 A
- c) 2.188E-01 A
- d) 2.407E-01 A
- e) 2.648E-01 A

--(

*Answer & Why this question is different.*)

- a) 1.414E+01 cm
^{3}/s - b) 1.556E+01 cm
^{3}/s - c) 1.711E+01 cm
^{3}/s - d) 1.882E+01 cm
^{3}/s - e) 2.070E+01 cm
^{3}/s

#### KEY:QB:Ch 13:V1[edit]

QB153099154193

1) A time dependent magnetic field is directed perpendicular to the plane of a circular coil with a radius of 0.798 m. The magnetic field is spatially uniform but decays in time according to , where 4.63 s. What is the current in the coil if the impedance of the coil is 75.7 Ω?

- -a) 2.651E-01 A
- -b) 2.917E-01 A
- -c) 3.208E-01 A
- +d) 3.529E-01 A
- -e) 3.882E-01 A

2) A square coil has sides that are L= 0.259 m long and is tightly wound with N=628 turns of wire. The resistance of the coil is R=6.51 Ω. The coil is placed in a spacially uniform magnetic field that is directed perpendicular to the face of the coil and whose magnitude is increasing at a rate dB/dt=0.0372 T/s. If R represents the only impedance of the coil, what is the magnitude of the current circulting through it?

- -a) 1.809E-01 A
- -b) 1.989E-01 A
- -c) 2.188E-01 A
- +d) 2.407E-01 A
- -e) 2.648E-01 A

--(

*Answer & Why this question is different.*)

- -a) 1.414E+01 cm
^{3}/s - -b) 1.556E+01 cm
^{3}/s - -c) 1.711E+01 cm
^{3}/s - -d) 1.882E+01 cm
^{3}/s - +e) 2.070E+01 cm
^{3}/s

### QB:Ch 13:V2[edit]

QB153099154193

--(

*Answer & Why this question is different.*)

- a) 2.976E+01 cm
^{3}/s - b) 3.274E+01 cm
^{3}/s - c) 3.601E+01 cm
^{3}/s - d) 3.961E+01 cm
^{3}/s - e) 4.358E+01 cm
^{3}/s

2) A time dependent magnetic field is directed perpendicular to the plane of a circular coil with a radius of 0.419 m. The magnetic field is spatially uniform but decays in time according to , where 9.15 s. What is the current in the coil if the impedance of the coil is 67.8 Ω?

- a) 1.240E-01 A
- b) 1.364E-01 A
- c) 1.500E-01 A
- d) 1.650E-01 A
- e) 1.815E-01 A

3) A square coil has sides that are L= 0.325 m long and is tightly wound with N=697 turns of wire. The resistance of the coil is R=4.87 Ω. The coil is placed in a spacially uniform magnetic field that is directed perpendicular to the face of the coil and whose magnitude is increasing at a rate dB/dt=0.0842 T/s. If R represents the only impedance of the coil, what is the magnitude of the current circulting through it?

- a) 1.157E+00 A
- b) 1.273E+00 A
- c) 1.400E+00 A
- d) 1.540E+00 A
- e) 1.694E+00 A

#### KEY:QB:Ch 13:V2[edit]

QB153099154193

--(

*Answer & Why this question is different.*)

- +a) 2.976E+01 cm
^{3}/s - -b) 3.274E+01 cm
^{3}/s - -c) 3.601E+01 cm
^{3}/s - -d) 3.961E+01 cm
^{3}/s - -e) 4.358E+01 cm
^{3}/s

2) A time dependent magnetic field is directed perpendicular to the plane of a circular coil with a radius of 0.419 m. The magnetic field is spatially uniform but decays in time according to , where 9.15 s. What is the current in the coil if the impedance of the coil is 67.8 Ω?

- -a) 1.240E-01 A
- +b) 1.364E-01 A
- -c) 1.500E-01 A
- -d) 1.650E-01 A
- -e) 1.815E-01 A

3) A square coil has sides that are L= 0.325 m long and is tightly wound with N=697 turns of wire. The resistance of the coil is R=4.87 Ω. The coil is placed in a spacially uniform magnetic field that is directed perpendicular to the face of the coil and whose magnitude is increasing at a rate dB/dt=0.0842 T/s. If R represents the only impedance of the coil, what is the magnitude of the current circulting through it?

- -a) 1.157E+00 A
- +b) 1.273E+00 A
- -c) 1.400E+00 A
- -d) 1.540E+00 A
- -e) 1.694E+00 A

### QB:Ch 14:V0[edit]

QB153099154193

- a) 4.551E-02 V
- b) 5.006E-02 V
- c) 5.507E-02 V
- d) 6.057E-02 V
- e) 6.663E-02 V

_{1}in the figure shown was closed and remained closed long enough to acheive steady state. At t=0 S

_{1}is opened as as S

_{2}is closed. How long will it take for the energy stored in the inductor to be reduced to 1.67% of its maximum value if ε = 5.07 V , R = 7.8 Ω, and L = 4.39 H?

- a) -1.047E+00 s
- b) -1.152E+00 s
- c) -1.267E+00 s
- d) -1.393E+00 s
- e) -1.533E+00 s

3) A washer has an inner diameter of 2.37 cm and an outer diamter of 4.84 cm. The thickness is where is measured in cm, , and . What is the volume of the washer?

- a) 1.570E+00 cm
^{3} - b) 1.727E+00 cm
^{3} - c) 1.900E+00 cm
^{3} - d) 2.090E+00 cm
^{3} - e) 2.299E+00 cm
^{3}

#### KEY:QB:Ch 14:V0[edit]

QB153099154193

- -a) 4.551E-02 V
- -b) 5.006E-02 V
- -c) 5.507E-02 V
- -d) 6.057E-02 V
- +e) 6.663E-02 V

_{1}in the figure shown was closed and remained closed long enough to acheive steady state. At t=0 S

_{1}is opened as as S

_{2}is closed. How long will it take for the energy stored in the inductor to be reduced to 1.67% of its maximum value if ε = 5.07 V , R = 7.8 Ω, and L = 4.39 H?

- -a) -1.047E+00 s
- +b) -1.152E+00 s
- -c) -1.267E+00 s
- -d) -1.393E+00 s
- -e) -1.533E+00 s

3) A washer has an inner diameter of 2.37 cm and an outer diamter of 4.84 cm. The thickness is where is measured in cm, , and . What is the volume of the washer?

- +a) 1.570E+00 cm
^{3} - -b) 1.727E+00 cm
^{3} - -c) 1.900E+00 cm
^{3} - -d) 2.090E+00 cm
^{3} - -e) 2.299E+00 cm
^{3}

### QB:Ch 14:V1[edit]

QB153099154193

_{1}in the figure shown was closed and remained closed long enough to acheive steady state. At t=0 S

_{1}is opened as as S

_{2}is closed. How long will it take for the energy stored in the inductor to be reduced to 2.01% of its maximum value if ε = 1.45 V , R = 4.4 Ω, and L = 2.36 H?

- a) -8.659E-01 s
- b) -9.525E-01 s
- c) -1.048E+00 s
- d) -1.153E+00 s
- e) -1.268E+00 s

- a) 2.643E-02 V
- b) 2.907E-02 V
- c) 3.198E-02 V
- d) 3.518E-02 V
- e) 3.869E-02 V

3) A washer has an inner diameter of 2.16 cm and an outer diamter of 4.82 cm. The thickness is where is measured in cm, , and . What is the volume of the washer?

- a) 1.342E+00 cm
^{3} - b) 1.477E+00 cm
^{3} - c) 1.624E+00 cm
^{3} - d) 1.787E+00 cm
^{3} - e) 1.965E+00 cm
^{3}

#### KEY:QB:Ch 14:V1[edit]

QB153099154193

_{1}in the figure shown was closed and remained closed long enough to acheive steady state. At t=0 S

_{1}is opened as as S

_{2}is closed. How long will it take for the energy stored in the inductor to be reduced to 2.01% of its maximum value if ε = 1.45 V , R = 4.4 Ω, and L = 2.36 H?

- -a) -8.659E-01 s
- -b) -9.525E-01 s
- +c) -1.048E+00 s
- -d) -1.153E+00 s
- -e) -1.268E+00 s

- -a) 2.643E-02 V
- +b) 2.907E-02 V
- -c) 3.198E-02 V
- -d) 3.518E-02 V
- -e) 3.869E-02 V

3) A washer has an inner diameter of 2.16 cm and an outer diamter of 4.82 cm. The thickness is where is measured in cm, , and . What is the volume of the washer?

- -a) 1.342E+00 cm
^{3} - +b) 1.477E+00 cm
^{3} - -c) 1.624E+00 cm
^{3} - -d) 1.787E+00 cm
^{3} - -e) 1.965E+00 cm
^{3}

### QB:Ch 14:V2[edit]

QB153099154193

_{1}in the figure shown was closed and remained closed long enough to acheive steady state. At t=0 S

_{1}is opened as as S

_{2}is closed. How long will it take for the energy stored in the inductor to be reduced to 1.67% of its maximum value if ε = 5.07 V , R = 7.8 Ω, and L = 4.39 H?

- a) -1.047E+00 s
- b) -1.152E+00 s
- c) -1.267E+00 s
- d) -1.393E+00 s
- e) -1.533E+00 s

- a) 1.894E-02 V
- b) 2.083E-02 V
- c) 2.291E-02 V
- d) 2.520E-02 V
- e) 2.772E-02 V

3) A washer has an inner diameter of 2.23 cm and an outer diamter of 4.18 cm. The thickness is where is measured in cm, , and . What is the volume of the washer?

- a) 1.351E+00 cm
^{3} - b) 1.486E+00 cm
^{3} - c) 1.635E+00 cm
^{3} - d) 1.798E+00 cm
^{3} - e) 1.978E+00 cm
^{3}

#### KEY:QB:Ch 14:V2[edit]

QB153099154193

_{1}in the figure shown was closed and remained closed long enough to acheive steady state. At t=0 S

_{1}is opened as as S

_{2}is closed. How long will it take for the energy stored in the inductor to be reduced to 1.67% of its maximum value if ε = 5.07 V , R = 7.8 Ω, and L = 4.39 H?

- -a) -1.047E+00 s
- +b) -1.152E+00 s
- -c) -1.267E+00 s
- -d) -1.393E+00 s
- -e) -1.533E+00 s

- -a) 1.894E-02 V
- -b) 2.083E-02 V
- -c) 2.291E-02 V
- +d) 2.520E-02 V
- -e) 2.772E-02 V

3) A washer has an inner diameter of 2.23 cm and an outer diamter of 4.18 cm. The thickness is where is measured in cm, , and . What is the volume of the washer?

- +a) 1.351E+00 cm
^{3} - -b) 1.486E+00 cm
^{3} - -c) 1.635E+00 cm
^{3} - -d) 1.798E+00 cm
^{3} - -e) 1.978E+00 cm
^{3}

### QB:Ch 15:V0[edit]

QB153099154193

1) An ac generator produces an emf of amplitude 5 V at a frequency of 52 Hz. What is the maximum amplitude of the current if the generator is connected to a 49 mF inductor?

- a) 2.839E-01 A
- b) 3.123E-01 A
- c) 3.435E-01 A
- d) 3.779E-01 A
- e) 4.157E-01 A

2) A step-down transformer steps 18 kV down to 170 V. The high-voltage input is provided by a 230 Ω power line that carries 5 A of currentWhat is the output current (at the 170 V side ?)

- a) 4.375E+02 A
- b) 4.813E+02 A
- c) 5.294E+02 A
- d) 5.824E+02 A
- e) 6.406E+02 A

3) The quality factor Q is a dimensionless paramater involving the relative values of the magnitudes of the at three impedances (R, X_{L}, X_{C}). Since Q is calculatedat resonance, X_{L}, X_{C} and only twoimpedances are involved, Q=≡ω_{0}L/R is definedso that Q is large if the resistance is low. Calculate the Q of an LRC series driven at resonance by an applied voltage of of V=V_{0}sin(ωt), where V_{0}=5 V. The resistance, inductance, and capacitance are R =0.27 Ω, L= 4.30E-03H , and C=2.20E-06 F, respectively.

- a) Q = 1.238E+02
- b) Q = 1.424E+02
- c) Q = 1.637E+02
- d) Q = 1.883E+02
- e) Q = 2.165E+02

#### KEY:QB:Ch 15:V0[edit]

QB153099154193

1) An ac generator produces an emf of amplitude 5 V at a frequency of 52 Hz. What is the maximum amplitude of the current if the generator is connected to a 49 mF inductor?

- -a) 2.839E-01 A
- +b) 3.123E-01 A
- -c) 3.435E-01 A
- -d) 3.779E-01 A
- -e) 4.157E-01 A

2) A step-down transformer steps 18 kV down to 170 V. The high-voltage input is provided by a 230 Ω power line that carries 5 A of currentWhat is the output current (at the 170 V side ?)

- -a) 4.375E+02 A
- -b) 4.813E+02 A
- +c) 5.294E+02 A
- -d) 5.824E+02 A
- -e) 6.406E+02 A

3) The quality factor Q is a dimensionless paramater involving the relative values of the magnitudes of the at three impedances (R, X_{L}, X_{C}). Since Q is calculatedat resonance, X_{L}, X_{C} and only twoimpedances are involved, Q=≡ω_{0}L/R is definedso that Q is large if the resistance is low. Calculate the Q of an LRC series driven at resonance by an applied voltage of of V=V_{0}sin(ωt), where V_{0}=5 V. The resistance, inductance, and capacitance are R =0.27 Ω, L= 4.30E-03H , and C=2.20E-06 F, respectively.

- -a) Q = 1.238E+02
- -b) Q = 1.424E+02
- +c) Q = 1.637E+02
- -d) Q = 1.883E+02
- -e) Q = 2.165E+02

### QB:Ch 15:V1[edit]

QB153099154193

1) A step-down transformer steps 12 kV down to 230 V. The high-voltage input is provided by a 140 Ω power line that carries 5 A of currentWhat is the output current (at the 230 V side ?)

- a) 2.156E+02 A
- b) 2.372E+02 A
- c) 2.609E+02 A
- d) 2.870E+02 A
- e) 3.157E+02 A

2) The quality factor Q is a dimensionless paramater involving the relative values of the magnitudes of the at three impedances (R, X_{L}, X_{C}). Since Q is calculatedat resonance, X_{L}, X_{C} and only twoimpedances are involved, Q=≡ω_{0}L/R is definedso that Q is large if the resistance is low. Calculate the Q of an LRC series driven at resonance by an applied voltage of of V=V_{0}sin(ωt), where V_{0}=5 V. The resistance, inductance, and capacitance are R =0.17 Ω, L= 4.40E-03H , and C=3.40E-06 F, respectively.

- a) Q = 1.391E+02
- b) Q = 1.600E+02
- c) Q = 1.840E+02
- d) Q = 2.116E+02
- e) Q = 2.434E+02

3) An ac generator produces an emf of amplitude 76 V at a frequency of 180 Hz. What is the maximum amplitude of the current if the generator is connected to a 14 mF inductor?

- a) 3.606E+00 A
- b) 3.967E+00 A
- c) 4.364E+00 A
- d) 4.800E+00 A
- e) 5.280E+00 A

#### KEY:QB:Ch 15:V1[edit]

QB153099154193

1) A step-down transformer steps 12 kV down to 230 V. The high-voltage input is provided by a 140 Ω power line that carries 5 A of currentWhat is the output current (at the 230 V side ?)

- -a) 2.156E+02 A
- -b) 2.372E+02 A
- +c) 2.609E+02 A
- -d) 2.870E+02 A
- -e) 3.157E+02 A

2) The quality factor Q is a dimensionless paramater involving the relative values of the magnitudes of the at three impedances (R, X_{L}, X_{C}). Since Q is calculatedat resonance, X_{L}, X_{C} and only twoimpedances are involved, Q=≡ω_{0}L/R is definedso that Q is large if the resistance is low. Calculate the Q of an LRC series driven at resonance by an applied voltage of of V=V_{0}sin(ωt), where V_{0}=5 V. The resistance, inductance, and capacitance are R =0.17 Ω, L= 4.40E-03H , and C=3.40E-06 F, respectively.

- -a) Q = 1.391E+02
- -b) Q = 1.600E+02
- -c) Q = 1.840E+02
- +d) Q = 2.116E+02
- -e) Q = 2.434E+02

3) An ac generator produces an emf of amplitude 76 V at a frequency of 180 Hz. What is the maximum amplitude of the current if the generator is connected to a 14 mF inductor?

- -a) 3.606E+00 A
- -b) 3.967E+00 A
- -c) 4.364E+00 A
- +d) 4.800E+00 A
- -e) 5.280E+00 A

### QB:Ch 15:V2[edit]

QB153099154193

1) A step-down transformer steps 12 kV down to 230 V. The high-voltage input is provided by a 140 Ω power line that carries 5 A of currentWhat is the output current (at the 230 V side ?)

- a) 2.156E+02 A
- b) 2.372E+02 A
- c) 2.609E+02 A
- d) 2.870E+02 A
- e) 3.157E+02 A

2) The quality factor Q is a dimensionless paramater involving the relative values of the magnitudes of the at three impedances (R, X_{L}, X_{C}). Since Q is calculatedat resonance, X_{L}, X_{C} and only twoimpedances are involved, Q=≡ω_{0}L/R is definedso that Q is large if the resistance is low. Calculate the Q of an LRC series driven at resonance by an applied voltage of of V=V_{0}sin(ωt), where V_{0}=3 V. The resistance, inductance, and capacitance are R =0.22 Ω, L= 5.10E-03H , and C=2.50E-06 F, respectively.

- a) Q = 2.053E+02
- b) Q = 2.361E+02
- c) Q = 2.715E+02
- d) Q = 3.122E+02
- e) Q = 3.591E+02

3) An ac generator produces an emf of amplitude 60 V at a frequency of 130 Hz. What is the maximum amplitude of the current if the generator is connected to a 85 mF inductor?

- a) 7.856E-01 A
- b) 8.642E-01 A
- c) 9.506E-01 A
- d) 1.046E+00 A
- e) 1.150E+00 A

#### KEY:QB:Ch 15:V2[edit]

QB153099154193

- -a) 2.156E+02 A
- -b) 2.372E+02 A
- +c) 2.609E+02 A
- -d) 2.870E+02 A
- -e) 3.157E+02 A

2) The quality factor Q is a dimensionless paramater involving the relative values of the magnitudes of the at three impedances (R, X_{L}, X_{C}). Since Q is calculatedat resonance, X_{L}, X_{C} and only twoimpedances are involved, Q=≡ω_{0}L/R is definedso that Q is large if the resistance is low. Calculate the Q of an LRC series driven at resonance by an applied voltage of of V=V_{0}sin(ωt), where V_{0}=3 V. The resistance, inductance, and capacitance are R =0.22 Ω, L= 5.10E-03H , and C=2.50E-06 F, respectively.

- +a) Q = 2.053E+02
- -b) Q = 2.361E+02
- -c) Q = 2.715E+02
- -d) Q = 3.122E+02
- -e) Q = 3.591E+02

3) An ac generator produces an emf of amplitude 60 V at a frequency of 130 Hz. What is the maximum amplitude of the current if the generator is connected to a 85 mF inductor?

- -a) 7.856E-01 A
- +b) 8.642E-01 A
- -c) 9.506E-01 A
- -d) 1.046E+00 A
- -e) 1.150E+00 A

### QB:Ch 16:V0[edit]

QB153099154193

1) What is the radiation force on an object that is 1.20E+11 m away from the sun and has cross-sectional area of 0.055 m^{2}? The average power output of the Sun is 3.80E+26 W.

- a) 5.263E-07 N
- b) 5.789E-07 N
- c) 6.368E-07 N
- d) 7.005E-07 N
- e) 7.705E-07 N

^{2}and separation d=9.00E-03 m is connected via a swith to a 15 Ω resistor and a battery of voltage V

_{0}=94 V as shown in the figure. The current starts to flow at time t=0 when the switch is closed. What is the magnitude of the displacement current at time t=6.60E-04?

- a) 6.394E-02 A
- b) 7.033E-02 A
- c) 7.736E-02 A
- d) 8.510E-02 A
- e) 9.361E-02 A

3) A 56 kW radio transmitter on Earth sends it signal to a satellite 140 km away. At what distance in the same direction would the signal have the same maximum field strength if the transmitter's output power were increased to 72 kW?

- a) 1.084E+02 km
- b) 1.193E+02 km
- c) 1.312E+02 km
- d) 1.443E+02 km
- e) 1.587E+02 km

#### KEY:QB:Ch 16:V0[edit]

QB153099154193

1) What is the radiation force on an object that is 1.20E+11 m away from the sun and has cross-sectional area of 0.055 m^{2}? The average power output of the Sun is 3.80E+26 W.

- -a) 5.263E-07 N
- -b) 5.789E-07 N
- -c) 6.368E-07 N
- -d) 7.005E-07 N
- +e) 7.705E-07 N

^{2}and separation d=9.00E-03 m is connected via a swith to a 15 Ω resistor and a battery of voltage V

_{0}=94 V as shown in the figure. The current starts to flow at time t=0 when the switch is closed. What is the magnitude of the displacement current at time t=6.60E-04?

- -a) 6.394E-02 A
- +b) 7.033E-02 A
- -c) 7.736E-02 A
- -d) 8.510E-02 A
- -e) 9.361E-02 A

3) A 56 kW radio transmitter on Earth sends it signal to a satellite 140 km away. At what distance in the same direction would the signal have the same maximum field strength if the transmitter's output power were increased to 72 kW?

- -a) 1.084E+02 km
- -b) 1.193E+02 km
- -c) 1.312E+02 km
- -d) 1.443E+02 km
- +e) 1.587E+02 km

### QB:Ch 16:V1[edit]

QB153099154193

1) A 46 kW radio transmitter on Earth sends it signal to a satellite 120 km away. At what distance in the same direction would the signal have the same maximum field strength if the transmitter's output power were increased to 78 kW?

- a) 1.563E+02 km
- b) 1.719E+02 km
- c) 1.891E+02 km
- d) 2.080E+02 km
- e) 2.288E+02 km

^{2}and separation d=6.60E-03 m is connected via a swith to a 20 Ω resistor and a battery of voltage V

_{0}=59 V as shown in the figure. The current starts to flow at time t=0 when the switch is closed. What is the magnitude of the displacement current at time t=1.70E-04?

- a) 8.138E-01 A
- b) 8.952E-01 A
- c) 9.847E-01 A
- d) 1.083E+00 A
- e) 1.191E+00 A

3) What is the radiation force on an object that is 7.40E+11 m away from the sun and has cross-sectional area of 0.082 m^{2}? The average power output of the Sun is 3.80E+26 W.

- a) 2.063E-08 N
- b) 2.270E-08 N
- c) 2.497E-08 N
- d) 2.746E-08 N
- e) 3.021E-08 N

#### KEY:QB:Ch 16:V1[edit]

QB153099154193

1) A 46 kW radio transmitter on Earth sends it signal to a satellite 120 km away. At what distance in the same direction would the signal have the same maximum field strength if the transmitter's output power were increased to 78 kW?

- +a) 1.563E+02 km
- -b) 1.719E+02 km
- -c) 1.891E+02 km
- -d) 2.080E+02 km
- -e) 2.288E+02 km

^{2}and separation d=6.60E-03 m is connected via a swith to a 20 Ω resistor and a battery of voltage V

_{0}=59 V as shown in the figure. The current starts to flow at time t=0 when the switch is closed. What is the magnitude of the displacement current at time t=1.70E-04?

- +a) 8.138E-01 A
- -b) 8.952E-01 A
- -c) 9.847E-01 A
- -d) 1.083E+00 A
- -e) 1.191E+00 A

3) What is the radiation force on an object that is 7.40E+11 m away from the sun and has cross-sectional area of 0.082 m^{2}? The average power output of the Sun is 3.80E+26 W.

- -a) 2.063E-08 N
- -b) 2.270E-08 N
- -c) 2.497E-08 N
- -d) 2.746E-08 N
- +e) 3.021E-08 N

### QB:Ch 16:V2[edit]

QB153099154193

1) A 49 kW radio transmitter on Earth sends it signal to a satellite 120 km away. At what distance in the same direction would the signal have the same maximum field strength if the transmitter's output power were increased to 89 kW?

- a) 1.617E+02 km
- b) 1.779E+02 km
- c) 1.957E+02 km
- d) 2.153E+02 km
- e) 2.368E+02 km

^{2}and separation d=8.30E-03 m is connected via a swith to a 84 Ω resistor and a battery of voltage V

_{0}=3 V as shown in the figure. The current starts to flow at time t=0 when the switch is closed. What is the magnitude of the displacement current at time t=2.60E-03?

- a) 4.678E-04 A
- b) 5.145E-04 A
- c) 5.660E-04 A
- d) 6.226E-04 A
- e) 6.848E-04 A

3) What is the radiation force on an object that is 4.70E+11 m away from the sun and has cross-sectional area of 0.015 m^{2}? The average power output of the Sun is 3.80E+26 W.

- a) 1.029E-08 N
- b) 1.132E-08 N
- c) 1.245E-08 N
- d) 1.370E-08 N
- e) 1.507E-08 N

#### KEY:QB:Ch 16:V2[edit]

QB153099154193

1) A 49 kW radio transmitter on Earth sends it signal to a satellite 120 km away. At what distance in the same direction would the signal have the same maximum field strength if the transmitter's output power were increased to 89 kW?

- +a) 1.617E+02 km
- -b) 1.779E+02 km
- -c) 1.957E+02 km
- -d) 2.153E+02 km
- -e) 2.368E+02 km

^{2}and separation d=8.30E-03 m is connected via a swith to a 84 Ω resistor and a battery of voltage V

_{0}=3 V as shown in the figure. The current starts to flow at time t=0 when the switch is closed. What is the magnitude of the displacement current at time t=2.60E-03?

- -a) 4.678E-04 A
- +b) 5.145E-04 A
- -c) 5.660E-04 A
- -d) 6.226E-04 A
- -e) 6.848E-04 A

3) What is the radiation force on an object that is 4.70E+11 m away from the sun and has cross-sectional area of 0.015 m^{2}? The average power output of the Sun is 3.80E+26 W.

- -a) 1.029E-08 N
- -b) 1.132E-08 N
- -c) 1.245E-08 N
- +d) 1.370E-08 N
- -e) 1.507E-08 N