Quizbank/Electricity and Magnetism (calculus based)/QB153089888064
QB153089888064
QB:Ch 5:V0
[edit | edit source]QB153089888064
- a) 7.415E+09 N/C2
- b) 8.156E+09 N/C2
- c) 8.972E+09 N/C2
- d) 9.869E+09 N/C2
- e) 1.086E+10 N/C2
is an integral that calculates the z-component of the electric field at point P situated above the x-axis where a charged rod of length (a+b) is located. The distance between point P and the x-axis is z=1.9 m. Evaluate at x=0.54 m if a=1.0 m, b=2.0 m. The total charge on the rod is 3 nC.
- a) 1.665E+00 V/m2
- b) 1.831E+00 V/m2
- c) 2.014E+00 V/m2
- d) 2.216E+00 V/m2
- e) 2.437E+00 V/m2
- a) 5.243E+01 degrees
- b) 5.767E+01 degrees
- c) 6.343E+01 degrees
- d) 6.978E+01 degrees
- e) 7.676E+01 degrees
KEY:QB:Ch 5:V0
[edit | edit source]QB153089888064
- -a) 7.415E+09 N/C2
- -b) 8.156E+09 N/C2
- -c) 8.972E+09 N/C2
- -d) 9.869E+09 N/C2
- +e) 1.086E+10 N/C2
is an integral that calculates the z-component of the electric field at point P situated above the x-axis where a charged rod of length (a+b) is located. The distance between point P and the x-axis is z=1.9 m. Evaluate at x=0.54 m if a=1.0 m, b=2.0 m. The total charge on the rod is 3 nC.
- -a) 1.665E+00 V/m2
- -b) 1.831E+00 V/m2
- -c) 2.014E+00 V/m2
- +d) 2.216E+00 V/m2
- -e) 2.437E+00 V/m2
- -a) 5.243E+01 degrees
- -b) 5.767E+01 degrees
- +c) 6.343E+01 degrees
- -d) 6.978E+01 degrees
- -e) 7.676E+01 degrees
QB:Ch 5:V1
[edit | edit source]QB153089888064
- a) 7.119E+09 N/C2
- b) 7.831E+09 N/C2
- c) 8.614E+09 N/C2
- d) 9.476E+09 N/C2
- e) 1.042E+10 N/C2
- a) 5.243E+01 degrees
- b) 5.767E+01 degrees
- c) 6.343E+01 degrees
- d) 6.978E+01 degrees
- e) 7.676E+01 degrees
is an integral that calculates the z-component of the electric field at point P situated above the x-axis where a charged rod of length (a+b) is located. The distance between point P and the x-axis is z=1.6 m. Evaluate at x=0.73 m if a=0.64 m, b=1.8 m. The total charge on the rod is 3 nC.
- a) 2.955E+00 V/m2
- b) 3.250E+00 V/m2
- c) 3.575E+00 V/m2
- d) 3.933E+00 V/m2
- e) 4.326E+00 V/m2
KEY:QB:Ch 5:V1
[edit | edit source]QB153089888064
- -a) 7.119E+09 N/C2
- -b) 7.831E+09 N/C2
- +c) 8.614E+09 N/C2
- -d) 9.476E+09 N/C2
- -e) 1.042E+10 N/C2
- -a) 5.243E+01 degrees
- -b) 5.767E+01 degrees
- +c) 6.343E+01 degrees
- -d) 6.978E+01 degrees
- -e) 7.676E+01 degrees
is an integral that calculates the z-component of the electric field at point P situated above the x-axis where a charged rod of length (a+b) is located. The distance between point P and the x-axis is z=1.6 m. Evaluate at x=0.73 m if a=0.64 m, b=1.8 m. The total charge on the rod is 3 nC.
- -a) 2.955E+00 V/m2
- +b) 3.250E+00 V/m2
- -c) 3.575E+00 V/m2
- -d) 3.933E+00 V/m2
- -e) 4.326E+00 V/m2
QB:Ch 5:V2
[edit | edit source]QB153089888064
is an integral that calculates the z-component of the electric field at point P situated above the x-axis where a charged rod of length (a+b) is located. The distance between point P and the x-axis is z=1.9 m. Evaluate at x=0.96 m if a=0.95 m, b=1.8 m. The total charge on the rod is 7 nC.
- a) 3.385E+00 V/m2
- b) 3.724E+00 V/m2
- c) 4.096E+00 V/m2
- d) 4.506E+00 V/m2
- e) 4.957E+00 V/m2
- a) 1.353E+09 N/C2
- b) 1.488E+09 N/C2
- c) 1.637E+09 N/C2
- d) 1.801E+09 N/C2
- e) 1.981E+09 N/C2
- a) 5.243E+01 degrees
- b) 5.767E+01 degrees
- c) 6.343E+01 degrees
- d) 6.978E+01 degrees
- e) 7.676E+01 degrees
KEY:QB:Ch 5:V2
[edit | edit source]QB153089888064
is an integral that calculates the z-component of the electric field at point P situated above the x-axis where a charged rod of length (a+b) is located. The distance between point P and the x-axis is z=1.9 m. Evaluate at x=0.96 m if a=0.95 m, b=1.8 m. The total charge on the rod is 7 nC.
- -a) 3.385E+00 V/m2
- -b) 3.724E+00 V/m2
- -c) 4.096E+00 V/m2
- +d) 4.506E+00 V/m2
- -e) 4.957E+00 V/m2
- -a) 1.353E+09 N/C2
- -b) 1.488E+09 N/C2
- +c) 1.637E+09 N/C2
- -d) 1.801E+09 N/C2
- -e) 1.981E+09 N/C2
- -a) 5.243E+01 degrees
- -b) 5.767E+01 degrees
- +c) 6.343E+01 degrees
- -d) 6.978E+01 degrees
- -e) 7.676E+01 degrees
QB:Ch 6:V0
[edit | edit source]QB153089888064
1) A non-conducting sphere of radius R=3.1 m has a non-uniform charge density that varies with the distnce from its center as given by ρ(r)=ar1.2 (r≤R) where a=2 nC·m-1.8. What is the magnitude of the electric field at a distance of 2.7 m from the center?
- a) 4.782E+02 N/C
- b) 5.260E+02 N/C
- c) 5.787E+02 N/C
- d) 6.365E+02 N/C
- e) 7.002E+02 N/C
2) What is the magnetude (absolute value) of the electric flux through a rectangle that occupies the z=0 plane with corners at (x,y)= (x=0, y=0), (x=8, y=0), (x=0, y=8), and (x=8, y=8), where x and y are measured in meters. The electric field is,
- a) 3.429E+03 V·m
- b) 3.771E+03 V·m
- c) 4.149E+03 V·m
- d) 4.564E+03 V·m
- e) 5.020E+03 V·m
3) Five concentric spherical shells have radius of exactly (1m, 2m, 3m, 4m, 5m).Each is uniformly charged with 5.6 nano-Coulombs. What is the magnitude of the electric field at a distance of 5.6 m from the center of the shells?
- a) 6.641E+00 N/C
- b) 7.305E+00 N/C
- c) 8.036E+00 N/C
- d) 8.839E+00 N/C
- e) 9.723E+00 N/C
KEY:QB:Ch 6:V0
[edit | edit source]QB153089888064
1) A non-conducting sphere of radius R=3.1 m has a non-uniform charge density that varies with the distnce from its center as given by ρ(r)=ar1.2 (r≤R) where a=2 nC·m-1.8. What is the magnitude of the electric field at a distance of 2.7 m from the center?
- +a) 4.782E+02 N/C
- -b) 5.260E+02 N/C
- -c) 5.787E+02 N/C
- -d) 6.365E+02 N/C
- -e) 7.002E+02 N/C
2) What is the magnetude (absolute value) of the electric flux through a rectangle that occupies the z=0 plane with corners at (x,y)= (x=0, y=0), (x=8, y=0), (x=0, y=8), and (x=8, y=8), where x and y are measured in meters. The electric field is,
- +a) 3.429E+03 V·m
- -b) 3.771E+03 V·m
- -c) 4.149E+03 V·m
- -d) 4.564E+03 V·m
- -e) 5.020E+03 V·m
3) Five concentric spherical shells have radius of exactly (1m, 2m, 3m, 4m, 5m).Each is uniformly charged with 5.6 nano-Coulombs. What is the magnitude of the electric field at a distance of 5.6 m from the center of the shells?
- -a) 6.641E+00 N/C
- -b) 7.305E+00 N/C
- +c) 8.036E+00 N/C
- -d) 8.839E+00 N/C
- -e) 9.723E+00 N/C
QB:Ch 6:V1
[edit | edit source]QB153089888064
1) What is the magnetude (absolute value) of the electric flux through a rectangle that occupies the z=0 plane with corners at (x,y)= (x=0, y=0), (x=4, y=0), (x=0, y=3), and (x=4, y=3), where x and y are measured in meters. The electric field is,
- a) 7.200E+01 V·m
- b) 7.920E+01 V·m
- c) 8.712E+01 V·m
- d) 9.583E+01 V·m
- e) 1.054E+02 V·m
2) A non-conducting sphere of radius R=1.2 m has a non-uniform charge density that varies with the distnce from its center as given by ρ(r)=ar1.6 (r≤R) where a=2 nC·m-1.4. What is the magnitude of the electric field at a distance of 0.76 m from the center?
- a) 2.406E+01 N/C
- b) 2.646E+01 N/C
- c) 2.911E+01 N/C
- d) 3.202E+01 N/C
- e) 3.522E+01 N/C
3) Five concentric spherical shells have radius of exactly (1m, 2m, 3m, 4m, 5m).Each is uniformly charged with 6.5 nano-Coulombs. What is the magnitude of the electric field at a distance of 1.3 m from the center of the shells?
- a) 2.601E+01 N/C
- b) 2.861E+01 N/C
- c) 3.147E+01 N/C
- d) 3.462E+01 N/C
- e) 3.808E+01 N/C
KEY:QB:Ch 6:V1
[edit | edit source]QB153089888064
1) What is the magnetude (absolute value) of the electric flux through a rectangle that occupies the z=0 plane with corners at (x,y)= (x=0, y=0), (x=4, y=0), (x=0, y=3), and (x=4, y=3), where x and y are measured in meters. The electric field is,
- +a) 7.200E+01 V·m
- -b) 7.920E+01 V·m
- -c) 8.712E+01 V·m
- -d) 9.583E+01 V·m
- -e) 1.054E+02 V·m
2) A non-conducting sphere of radius R=1.2 m has a non-uniform charge density that varies with the distnce from its center as given by ρ(r)=ar1.6 (r≤R) where a=2 nC·m-1.4. What is the magnitude of the electric field at a distance of 0.76 m from the center?
- +a) 2.406E+01 N/C
- -b) 2.646E+01 N/C
- -c) 2.911E+01 N/C
- -d) 3.202E+01 N/C
- -e) 3.522E+01 N/C
3) Five concentric spherical shells have radius of exactly (1m, 2m, 3m, 4m, 5m).Each is uniformly charged with 6.5 nano-Coulombs. What is the magnitude of the electric field at a distance of 1.3 m from the center of the shells?
- -a) 2.601E+01 N/C
- -b) 2.861E+01 N/C
- -c) 3.147E+01 N/C
- +d) 3.462E+01 N/C
- -e) 3.808E+01 N/C
QB:Ch 6:V2
[edit | edit source]QB153089888064
1) Five concentric spherical shells have radius of exactly (1m, 2m, 3m, 4m, 5m).Each is uniformly charged with 3.4 nano-Coulombs. What is the magnitude of the electric field at a distance of 2.8 m from the center of the shells?
- a) 5.865E+00 N/C
- b) 6.451E+00 N/C
- c) 7.096E+00 N/C
- d) 7.806E+00 N/C
- e) 8.587E+00 N/C
2) What is the magnetude (absolute value) of the electric flux through a rectangle that occupies the z=0 plane with corners at (x,y)= (x=0, y=0), (x=4, y=0), (x=0, y=9), and (x=4, y=9), where x and y are measured in meters. The electric field is,
- a) 7.054E+03 V·m
- b) 7.759E+03 V·m
- c) 8.535E+03 V·m
- d) 9.388E+03 V·m
- e) 1.033E+04 V·m
3) A non-conducting sphere of radius R=3.8 m has a non-uniform charge density that varies with the distnce from its center as given by ρ(r)=ar1.5 (r≤R) where a=2 nC·m-1.5. What is the magnitude of the electric field at a distance of 3.0 m from the center?
- a) 7.825E+02 N/C
- b) 8.607E+02 N/C
- c) 9.468E+02 N/C
- d) 1.041E+03 N/C
- e) 1.146E+03 N/C
KEY:QB:Ch 6:V2
[edit | edit source]QB153089888064
1) Five concentric spherical shells have radius of exactly (1m, 2m, 3m, 4m, 5m).Each is uniformly charged with 3.4 nano-Coulombs. What is the magnitude of the electric field at a distance of 2.8 m from the center of the shells?
- -a) 5.865E+00 N/C
- -b) 6.451E+00 N/C
- -c) 7.096E+00 N/C
- +d) 7.806E+00 N/C
- -e) 8.587E+00 N/C
2) What is the magnetude (absolute value) of the electric flux through a rectangle that occupies the z=0 plane with corners at (x,y)= (x=0, y=0), (x=4, y=0), (x=0, y=9), and (x=4, y=9), where x and y are measured in meters. The electric field is,
- -a) 7.054E+03 V·m
- -b) 7.759E+03 V·m
- -c) 8.535E+03 V·m
- -d) 9.388E+03 V·m
- +e) 1.033E+04 V·m
3) A non-conducting sphere of radius R=3.8 m has a non-uniform charge density that varies with the distnce from its center as given by ρ(r)=ar1.5 (r≤R) where a=2 nC·m-1.5. What is the magnitude of the electric field at a distance of 3.0 m from the center?
- +a) 7.825E+02 N/C
- -b) 8.607E+02 N/C
- -c) 9.468E+02 N/C
- -d) 1.041E+03 N/C
- -e) 1.146E+03 N/C
QB:Ch 7:V0
[edit | edit source]QB153089888064
1) A 12.0 V battery can move 40,000 C of charge. How many Joules does it deliver?
- a) 3.278E+05 J
- b) 3.606E+05 J
- c) 3.967E+05 J
- d) 4.364E+05 J
- e) 4.800E+05 J
2) When a 3.63 V battery operates a 1.34 W bulb, how many electrons pass through it each second?
- a) 2.095E+18 electrons
- b) 2.304E+18 electrons
- c) 2.534E+18 electrons
- d) 2.788E+18 electrons
- e) 3.067E+18 electrons
3) Two large parallel conducting plates are separated by 7.81 mm. Equal and opposite surface charges of 7.440E-07 C/m2 exist on the surfaces between the plates. What is the distance between equipotential planes which differ by 80 V?
- a) 9.521E-01 mm
- b) 1.095E+00 mm
- c) 1.259E+00 mm
- d) 1.448E+00 mm
- e) 1.665E+00 mm
KEY:QB:Ch 7:V0
[edit | edit source]QB153089888064
1) A 12.0 V battery can move 40,000 C of charge. How many Joules does it deliver?
- -a) 3.278E+05 J
- -b) 3.606E+05 J
- -c) 3.967E+05 J
- -d) 4.364E+05 J
- +e) 4.800E+05 J
2) When a 3.63 V battery operates a 1.34 W bulb, how many electrons pass through it each second?
- -a) 2.095E+18 electrons
- +b) 2.304E+18 electrons
- -c) 2.534E+18 electrons
- -d) 2.788E+18 electrons
- -e) 3.067E+18 electrons
3) Two large parallel conducting plates are separated by 7.81 mm. Equal and opposite surface charges of 7.440E-07 C/m2 exist on the surfaces between the plates. What is the distance between equipotential planes which differ by 80 V?
- +a) 9.521E-01 mm
- -b) 1.095E+00 mm
- -c) 1.259E+00 mm
- -d) 1.448E+00 mm
- -e) 1.665E+00 mm
QB:Ch 7:V1
[edit | edit source]QB153089888064
1) Two large parallel conducting plates are separated by 7.01 mm. Equal and opposite surface charges of 7.330E-07 C/m2 exist on the surfaces between the plates. What is the distance between equipotential planes which differ by 55 V?
- a) 3.799E-01 mm
- b) 4.368E-01 mm
- c) 5.024E-01 mm
- d) 5.777E-01 mm
- e) 6.644E-01 mm
2) A 12.0 V battery can move 32,000 C of charge. How many Joules does it deliver?
- a) 2.885E+05 J
- b) 3.174E+05 J
- c) 3.491E+05 J
- d) 3.840E+05 J
- e) 4.224E+05 J
3) When a 3.21 V battery operates a 2.38 W bulb, how many electrons pass through it each second?
- a) 3.161E+18 electrons
- b) 3.477E+18 electrons
- c) 3.825E+18 electrons
- d) 4.207E+18 electrons
- e) 4.628E+18 electrons
KEY:QB:Ch 7:V1
[edit | edit source]QB153089888064
1) Two large parallel conducting plates are separated by 7.01 mm. Equal and opposite surface charges of 7.330E-07 C/m2 exist on the surfaces between the plates. What is the distance between equipotential planes which differ by 55 V?
- -a) 3.799E-01 mm
- -b) 4.368E-01 mm
- -c) 5.024E-01 mm
- -d) 5.777E-01 mm
- +e) 6.644E-01 mm
2) A 12.0 V battery can move 32,000 C of charge. How many Joules does it deliver?
- -a) 2.885E+05 J
- -b) 3.174E+05 J
- -c) 3.491E+05 J
- +d) 3.840E+05 J
- -e) 4.224E+05 J
3) When a 3.21 V battery operates a 2.38 W bulb, how many electrons pass through it each second?
- -a) 3.161E+18 electrons
- -b) 3.477E+18 electrons
- -c) 3.825E+18 electrons
- -d) 4.207E+18 electrons
- +e) 4.628E+18 electrons
QB:Ch 7:V2
[edit | edit source]QB153089888064
1) Two large parallel conducting plates are separated by 7.83 mm. Equal and opposite surface charges of 7.530E-07 C/m2 exist on the surfaces between the plates. What is the distance between equipotential planes which differ by 86 V?
- a) 8.793E-01 mm
- b) 1.011E+00 mm
- c) 1.163E+00 mm
- d) 1.337E+00 mm
- e) 1.538E+00 mm
2) When a 7.1 V battery operates a 1.8 W bulb, how many electrons pass through it each second?
- a) 1.439E+18 electrons
- b) 1.582E+18 electrons
- c) 1.741E+18 electrons
- d) 1.915E+18 electrons
- e) 2.106E+18 electrons
3) A 12.0 V battery can move 32,000 C of charge. How many Joules does it deliver?
- a) 2.885E+05 J
- b) 3.174E+05 J
- c) 3.491E+05 J
- d) 3.840E+05 J
- e) 4.224E+05 J
KEY:QB:Ch 7:V2
[edit | edit source]QB153089888064
1) Two large parallel conducting plates are separated by 7.83 mm. Equal and opposite surface charges of 7.530E-07 C/m2 exist on the surfaces between the plates. What is the distance between equipotential planes which differ by 86 V?
- -a) 8.793E-01 mm
- +b) 1.011E+00 mm
- -c) 1.163E+00 mm
- -d) 1.337E+00 mm
- -e) 1.538E+00 mm
2) When a 7.1 V battery operates a 1.8 W bulb, how many electrons pass through it each second?
- -a) 1.439E+18 electrons
- +b) 1.582E+18 electrons
- -c) 1.741E+18 electrons
- -d) 1.915E+18 electrons
- -e) 2.106E+18 electrons
3) A 12.0 V battery can move 32,000 C of charge. How many Joules does it deliver?
- -a) 2.885E+05 J
- -b) 3.174E+05 J
- -c) 3.491E+05 J
- +d) 3.840E+05 J
- -e) 4.224E+05 J
QB:Ch 8:V0
[edit | edit source]QB153089888064
- a) 5.445E+00 μF
- b) 5.990E+00 μF
- c) 6.589E+00 μF
- d) 7.247E+00 μF
- e) 7.972E+00 μF
2) An empty parallel-plate capacitor with metal plates has an area of 1.73 m2, separated by 1.16 mm. How much charge does it store if the voltage is 1.130E+03 V?
- a) 1.121E+01 μC
- b) 1.233E+01 μC
- c) 1.357E+01 μC
- d) 1.492E+01 μC
- e) 1.641E+01 μC
- a) 1.303E+01 μJ
- b) 1.434E+01 μJ
- c) 1.577E+01 μJ
- d) 1.735E+01 μJ
- e) 1.908E+01 μJ
KEY:QB:Ch 8:V0
[edit | edit source]QB153089888064
- -a) 5.445E+00 μF
- +b) 5.990E+00 μF
- -c) 6.589E+00 μF
- -d) 7.247E+00 μF
- -e) 7.972E+00 μF
2) An empty parallel-plate capacitor with metal plates has an area of 1.73 m2, separated by 1.16 mm. How much charge does it store if the voltage is 1.130E+03 V?
- -a) 1.121E+01 μC
- -b) 1.233E+01 μC
- -c) 1.357E+01 μC
- +d) 1.492E+01 μC
- -e) 1.641E+01 μC
- -a) 1.303E+01 μJ
- -b) 1.434E+01 μJ
- -c) 1.577E+01 μJ
- -d) 1.735E+01 μJ
- +e) 1.908E+01 μJ
QB:Ch 8:V1
[edit | edit source]QB153089888064
- a) 4.489E+00 μF
- b) 4.938E+00 μF
- c) 5.432E+00 μF
- d) 5.975E+00 μF
- e) 6.573E+00 μF
2) An empty parallel-plate capacitor with metal plates has an area of 1.94 m2, separated by 1.27 mm. How much charge does it store if the voltage is 8.780E+03 V?
- a) 1.080E+02 μC
- b) 1.188E+02 μC
- c) 1.306E+02 μC
- d) 1.437E+02 μC
- e) 1.581E+02 μC
- a) 1.199E+01 μJ
- b) 1.319E+01 μJ
- c) 1.450E+01 μJ
- d) 1.595E+01 μJ
- e) 1.755E+01 μJ
KEY:QB:Ch 8:V1
[edit | edit source]QB153089888064
- -a) 4.489E+00 μF
- -b) 4.938E+00 μF
- +c) 5.432E+00 μF
- -d) 5.975E+00 μF
- -e) 6.573E+00 μF
2) An empty parallel-plate capacitor with metal plates has an area of 1.94 m2, separated by 1.27 mm. How much charge does it store if the voltage is 8.780E+03 V?
- -a) 1.080E+02 μC
- +b) 1.188E+02 μC
- -c) 1.306E+02 μC
- -d) 1.437E+02 μC
- -e) 1.581E+02 μC
- +a) 1.199E+01 μJ
- -b) 1.319E+01 μJ
- -c) 1.450E+01 μJ
- -d) 1.595E+01 μJ
- -e) 1.755E+01 μJ
QB:Ch 8:V2
[edit | edit source]QB153089888064
- a) 8.718E+00 μJ
- b) 9.589E+00 μJ
- c) 1.055E+01 μJ
- d) 1.160E+01 μJ
- e) 1.276E+01 μJ
- a) 4.220E+00 μF
- b) 4.642E+00 μF
- c) 5.106E+00 μF
- d) 5.616E+00 μF
- e) 6.178E+00 μF
3) An empty parallel-plate capacitor with metal plates has an area of 2.16 m2, separated by 1.12 mm. How much charge does it store if the voltage is 1.530E+03 V?
- a) 2.375E+01 μC
- b) 2.613E+01 μC
- c) 2.874E+01 μC
- d) 3.161E+01 μC
- e) 3.477E+01 μC
KEY:QB:Ch 8:V2
[edit | edit source]QB153089888064
- -a) 8.718E+00 μJ
- -b) 9.589E+00 μJ
- -c) 1.055E+01 μJ
- -d) 1.160E+01 μJ
- +e) 1.276E+01 μJ
- +a) 4.220E+00 μF
- -b) 4.642E+00 μF
- -c) 5.106E+00 μF
- -d) 5.616E+00 μF
- -e) 6.178E+00 μF
3) An empty parallel-plate capacitor with metal plates has an area of 2.16 m2, separated by 1.12 mm. How much charge does it store if the voltage is 1.530E+03 V?
- -a) 2.375E+01 μC
- +b) 2.613E+01 μC
- -c) 2.874E+01 μC
- -d) 3.161E+01 μC
- -e) 3.477E+01 μC
QB:Ch 9:V0
[edit | edit source]QB153089888064
1) What is consumer cost to operate one 73−W incandescent bulb for 11 hours per day for 1 year (365 days) if the cost of electricity is $0.113 per kilowatt-hour?
- a) $3.312E+01
- b) $3.643E+01
- c) $4.007E+01
- d) $4.408E+01
- e) $4.849E+01
2) A make-believe metal has a density of 3.470E+03 kg/m3 and an atomic mass of 33.8 g/mol. Taking Avogadro's number to be 6.020E+23 atoms/mol and assuming one free electron per atom, calculate the number of free electrons per cubic meter.
- a) 6.180E+28 e−/m3
- b) 6.798E+28 e−/m3
- c) 7.478E+28 e−/m3
- d) 8.226E+28 e−/m3
- e) 9.049E+28 e−/m3
3) The charge passing a plane intersecting a wire is , where =30 C and 0.0178 s. What is the current at 0.0161 s?
- a) 5.125E+02 A
- b) 5.638E+02 A
- c) 6.201E+02 A
- d) 6.822E+02 A
- e) 7.504E+02 A
KEY:QB:Ch 9:V0
[edit | edit source]QB153089888064
1) What is consumer cost to operate one 73−W incandescent bulb for 11 hours per day for 1 year (365 days) if the cost of electricity is $0.113 per kilowatt-hour?
- +a) $3.312E+01
- -b) $3.643E+01
- -c) $4.007E+01
- -d) $4.408E+01
- -e) $4.849E+01
2) A make-believe metal has a density of 3.470E+03 kg/m3 and an atomic mass of 33.8 g/mol. Taking Avogadro's number to be 6.020E+23 atoms/mol and assuming one free electron per atom, calculate the number of free electrons per cubic meter.
- +a) 6.180E+28 e−/m3
- -b) 6.798E+28 e−/m3
- -c) 7.478E+28 e−/m3
- -d) 8.226E+28 e−/m3
- -e) 9.049E+28 e−/m3
3) The charge passing a plane intersecting a wire is , where =30 C and 0.0178 s. What is the current at 0.0161 s?
- -a) 5.125E+02 A
- -b) 5.638E+02 A
- -c) 6.201E+02 A
- +d) 6.822E+02 A
- -e) 7.504E+02 A
QB:Ch 9:V1
[edit | edit source]QB153089888064
1) A make-believe metal has a density of 7.000E+03 kg/m3 and an atomic mass of 89.4 g/mol. Taking Avogadro's number to be 6.020E+23 atoms/mol and assuming one free electron per atom, calculate the number of free electrons per cubic meter.
- a) 3.219E+28 e−/m3
- b) 3.541E+28 e−/m3
- c) 3.896E+28 e−/m3
- d) 4.285E+28 e−/m3
- e) 4.714E+28 e−/m3
2) What is consumer cost to operate one 56−W incandescent bulb for 6 hours per day for 1 year (365 days) if the cost of electricity is $0.13 per kilowatt-hour?
- a) $1.198E+01
- b) $1.318E+01
- c) $1.449E+01
- d) $1.594E+01
- e) $1.754E+01
3) The charge passing a plane intersecting a wire is , where =52 C and 0.018 s. What is the current at 0.0207 s?
- a) 6.872E+02 A
- b) 7.560E+02 A
- c) 8.316E+02 A
- d) 9.147E+02 A
- e) 1.006E+03 A
KEY:QB:Ch 9:V1
[edit | edit source]QB153089888064
1) A make-believe metal has a density of 7.000E+03 kg/m3 and an atomic mass of 89.4 g/mol. Taking Avogadro's number to be 6.020E+23 atoms/mol and assuming one free electron per atom, calculate the number of free electrons per cubic meter.
- -a) 3.219E+28 e−/m3
- -b) 3.541E+28 e−/m3
- -c) 3.896E+28 e−/m3
- -d) 4.285E+28 e−/m3
- +e) 4.714E+28 e−/m3
2) What is consumer cost to operate one 56−W incandescent bulb for 6 hours per day for 1 year (365 days) if the cost of electricity is $0.13 per kilowatt-hour?
- -a) $1.198E+01
- -b) $1.318E+01
- -c) $1.449E+01
- +d) $1.594E+01
- -e) $1.754E+01
3) The charge passing a plane intersecting a wire is , where =52 C and 0.018 s. What is the current at 0.0207 s?
- -a) 6.872E+02 A
- -b) 7.560E+02 A
- -c) 8.316E+02 A
- +d) 9.147E+02 A
- -e) 1.006E+03 A
QB:Ch 9:V2
[edit | edit source]QB153089888064
1) What is consumer cost to operate one 73−W incandescent bulb for 11 hours per day for 1 year (365 days) if the cost of electricity is $0.113 per kilowatt-hour?
- a) $3.312E+01
- b) $3.643E+01
- c) $4.007E+01
- d) $4.408E+01
- e) $4.849E+01
2) A make-believe metal has a density of 1.810E+04 kg/m3 and an atomic mass of 14.0 g/mol. Taking Avogadro's number to be 6.020E+23 atoms/mol and assuming one free electron per atom, calculate the number of free electrons per cubic meter.
- a) 5.847E+29 e−/m3
- b) 6.432E+29 e−/m3
- c) 7.075E+29 e−/m3
- d) 7.783E+29 e−/m3
- e) 8.561E+29 e−/m3
3) The charge passing a plane intersecting a wire is , where =84 C and 0.0199 s. What is the current at 0.0104 s?
- a) 2.275E+03 A
- b) 2.503E+03 A
- c) 2.753E+03 A
- d) 3.029E+03 A
- e) 3.331E+03 A
KEY:QB:Ch 9:V2
[edit | edit source]QB153089888064
1) What is consumer cost to operate one 73−W incandescent bulb for 11 hours per day for 1 year (365 days) if the cost of electricity is $0.113 per kilowatt-hour?
- +a) $3.312E+01
- -b) $3.643E+01
- -c) $4.007E+01
- -d) $4.408E+01
- -e) $4.849E+01
2) A make-believe metal has a density of 1.810E+04 kg/m3 and an atomic mass of 14.0 g/mol. Taking Avogadro's number to be 6.020E+23 atoms/mol and assuming one free electron per atom, calculate the number of free electrons per cubic meter.
- -a) 5.847E+29 e−/m3
- -b) 6.432E+29 e−/m3
- -c) 7.075E+29 e−/m3
- +d) 7.783E+29 e−/m3
- -e) 8.561E+29 e−/m3
3) The charge passing a plane intersecting a wire is , where =84 C and 0.0199 s. What is the current at 0.0104 s?
- -a) 2.275E+03 A
- +b) 2.503E+03 A
- -c) 2.753E+03 A
- -d) 3.029E+03 A
- -e) 3.331E+03 A
QB:Ch 10:V0
[edit | edit source]QB153089888064
- a) 1.285E-01 A
- b) 1.414E-01 A
- c) 1.555E-01 A
- d) 1.711E-01 A
- e) 1.882E-01 A
- a) 2.247E+00 mA
- b) 2.472E+00 mA
- c) 2.719E+00 mA
- d) 2.991E+00 mA
- e) 3.290E+00 mA
- a) 8.334E+00 V
- b) 9.167E+00 V
- c) 1.008E+01 V
- d) 1.109E+01 V
- e) 1.220E+01 V
KEY:QB:Ch 10:V0
[edit | edit source]QB153089888064
- +a) 1.285E-01 A
- -b) 1.414E-01 A
- -c) 1.555E-01 A
- -d) 1.711E-01 A
- -e) 1.882E-01 A
- +a) 2.247E+00 mA
- -b) 2.472E+00 mA
- -c) 2.719E+00 mA
- -d) 2.991E+00 mA
- -e) 3.290E+00 mA
- -a) 8.334E+00 V
- -b) 9.167E+00 V
- +c) 1.008E+01 V
- -d) 1.109E+01 V
- -e) 1.220E+01 V
QB:Ch 10:V1
[edit | edit source]QB153089888064
- a) 3.661E+00 mA
- b) 4.027E+00 mA
- c) 4.430E+00 mA
- d) 4.873E+00 mA
- e) 5.360E+00 mA
- a) 9.287E-02 A
- b) 1.022E-01 A
- c) 1.124E-01 A
- d) 1.236E-01 A
- e) 1.360E-01 A
- a) 3.416E+00 V
- b) 3.757E+00 V
- c) 4.133E+00 V
- d) 4.546E+00 V
- e) 5.001E+00 V
KEY:QB:Ch 10:V1
[edit | edit source]QB153089888064
- -a) 3.661E+00 mA
- -b) 4.027E+00 mA
- +c) 4.430E+00 mA
- -d) 4.873E+00 mA
- -e) 5.360E+00 mA
- -a) 9.287E-02 A
- -b) 1.022E-01 A
- -c) 1.124E-01 A
- +d) 1.236E-01 A
- -e) 1.360E-01 A
- -a) 3.416E+00 V
- -b) 3.757E+00 V
- -c) 4.133E+00 V
- +d) 4.546E+00 V
- -e) 5.001E+00 V
QB:Ch 10:V2
[edit | edit source]QB153089888064
- a) 1.114E-01 A
- b) 1.225E-01 A
- c) 1.348E-01 A
- d) 1.483E-01 A
- e) 1.631E-01 A
- a) 1.056E+01 V
- b) 1.161E+01 V
- c) 1.277E+01 V
- d) 1.405E+01 V
- e) 1.545E+01 V
- a) 2.247E+00 mA
- b) 2.472E+00 mA
- c) 2.719E+00 mA
- d) 2.991E+00 mA
- e) 3.290E+00 mA
KEY:QB:Ch 10:V2
[edit | edit source]QB153089888064
- -a) 1.114E-01 A
- +b) 1.225E-01 A
- -c) 1.348E-01 A
- -d) 1.483E-01 A
- -e) 1.631E-01 A
- -a) 1.056E+01 V
- -b) 1.161E+01 V
- -c) 1.277E+01 V
- +d) 1.405E+01 V
- -e) 1.545E+01 V
- +a) 2.247E+00 mA
- -b) 2.472E+00 mA
- -c) 2.719E+00 mA
- -d) 2.991E+00 mA
- -e) 3.290E+00 mA
QB:Ch 11:V0
[edit | edit source]QB153089888064
1) An alpha-particle (q=3.2x10−19C) moves through a uniform magnetic field that is parallel to the positive z-axis with magnitude 3.13 T. What is the x-component of the force on the alpha-particle if it is moving with a velocity
(5.64 i + 1.93 j + 8.71 k) x 104 m/s?
- a) 1.757E-14 N
- b) 1.933E-14 N
- c) 2.126E-14 N
- d) 2.339E-14 N
- e) 2.573E-14 N
2) A cyclotron used to accelerate alpha particlesm=6.64 x 10−27kg, q=3.2 x 10−19C) has a radius of 0.125 m and a magneticfield of 0.932 T. What is their maximum kinetic energy?
- a) 4.914E-01 MeV
- b) 5.406E-01 MeV
- c) 5.946E-01 MeV
- d) 6.541E-01 MeV
- e) 7.195E-01 MeV
3) A long rigind wire carries a 7 A current. What is the magnetic force per unit length on the wire if a 0.851 T magnetic field is directed 65° away from the wire?
- a) 4.908E+00 N/m
- b) 5.399E+00 N/m
- c) 5.939E+00 N/m
- d) 6.533E+00 N/m
- e) 7.186E+00 N/m
KEY:QB:Ch 11:V0
[edit | edit source]QB153089888064
1) An alpha-particle (q=3.2x10−19C) moves through a uniform magnetic field that is parallel to the positive z-axis with magnitude 3.13 T. What is the x-component of the force on the alpha-particle if it is moving with a velocity
(5.64 i + 1.93 j + 8.71 k) x 104 m/s?
- -a) 1.757E-14 N
- +b) 1.933E-14 N
- -c) 2.126E-14 N
- -d) 2.339E-14 N
- -e) 2.573E-14 N
2) A cyclotron used to accelerate alpha particlesm=6.64 x 10−27kg, q=3.2 x 10−19C) has a radius of 0.125 m and a magneticfield of 0.932 T. What is their maximum kinetic energy?
- -a) 4.914E-01 MeV
- -b) 5.406E-01 MeV
- -c) 5.946E-01 MeV
- +d) 6.541E-01 MeV
- -e) 7.195E-01 MeV
3) A long rigind wire carries a 7 A current. What is the magnetic force per unit length on the wire if a 0.851 T magnetic field is directed 65° away from the wire?
- -a) 4.908E+00 N/m
- +b) 5.399E+00 N/m
- -c) 5.939E+00 N/m
- -d) 6.533E+00 N/m
- -e) 7.186E+00 N/m
QB:Ch 11:V1
[edit | edit source]QB153089888064
1) An alpha-particle (q=3.2x10−19C) moves through a uniform magnetic field that is parallel to the positive z-axis with magnitude 7.22 T. What is the x-component of the force on the alpha-particle if it is moving with a velocity
(2.85 i + 1.28 j + 8.49 k) x 104 m/s?
- a) 2.222E-14 N
- b) 2.444E-14 N
- c) 2.688E-14 N
- d) 2.957E-14 N
- e) 3.253E-14 N
2) A cyclotron used to accelerate alpha particlesm=6.64 x 10−27kg, q=3.2 x 10−19C) has a radius of 0.44 m and a magneticfield of 1.31 T. What is their maximum kinetic energy?
- a) 1.323E+01 MeV
- b) 1.456E+01 MeV
- c) 1.601E+01 MeV
- d) 1.761E+01 MeV
- e) 1.937E+01 MeV
3) A long rigind wire carries a 8 A current. What is the magnetic force per unit length on the wire if a 0.578 T magnetic field is directed 38° away from the wire?
- a) 2.847E+00 N/m
- b) 3.132E+00 N/m
- c) 3.445E+00 N/m
- d) 3.789E+00 N/m
- e) 4.168E+00 N/m
KEY:QB:Ch 11:V1
[edit | edit source]QB153089888064
1) An alpha-particle (q=3.2x10−19C) moves through a uniform magnetic field that is parallel to the positive z-axis with magnitude 7.22 T. What is the x-component of the force on the alpha-particle if it is moving with a velocity
(2.85 i + 1.28 j + 8.49 k) x 104 m/s?
- -a) 2.222E-14 N
- -b) 2.444E-14 N
- -c) 2.688E-14 N
- +d) 2.957E-14 N
- -e) 3.253E-14 N
2) A cyclotron used to accelerate alpha particlesm=6.64 x 10−27kg, q=3.2 x 10−19C) has a radius of 0.44 m and a magneticfield of 1.31 T. What is their maximum kinetic energy?
- -a) 1.323E+01 MeV
- -b) 1.456E+01 MeV
- +c) 1.601E+01 MeV
- -d) 1.761E+01 MeV
- -e) 1.937E+01 MeV
3) A long rigind wire carries a 8 A current. What is the magnetic force per unit length on the wire if a 0.578 T magnetic field is directed 38° away from the wire?
- +a) 2.847E+00 N/m
- -b) 3.132E+00 N/m
- -c) 3.445E+00 N/m
- -d) 3.789E+00 N/m
- -e) 4.168E+00 N/m
QB:Ch 11:V2
[edit | edit source]QB153089888064
1) An alpha-particle (q=3.2x10−19C) moves through a uniform magnetic field that is parallel to the positive z-axis with magnitude 3.78 T. What is the x-component of the force on the alpha-particle if it is moving with a velocity
(1.43 i + 8.8 j + 4.16 k) x 104 m/s?
- a) 1.064E-13 N
- b) 1.171E-13 N
- c) 1.288E-13 N
- d) 1.417E-13 N
- e) 1.558E-13 N
2) A cyclotron used to accelerate alpha particlesm=6.64 x 10−27kg, q=3.2 x 10−19C) has a radius of 0.388 m and a magneticfield of 1.19 T. What is their maximum kinetic energy?
- a) 8.491E+00 MeV
- b) 9.340E+00 MeV
- c) 1.027E+01 MeV
- d) 1.130E+01 MeV
- e) 1.243E+01 MeV
3) A long rigind wire carries a 8 A current. What is the magnetic force per unit length on the wire if a 0.578 T magnetic field is directed 38° away from the wire?
- a) 2.847E+00 N/m
- b) 3.132E+00 N/m
- c) 3.445E+00 N/m
- d) 3.789E+00 N/m
- e) 4.168E+00 N/m
KEY:QB:Ch 11:V2
[edit | edit source]QB153089888064
1) An alpha-particle (q=3.2x10−19C) moves through a uniform magnetic field that is parallel to the positive z-axis with magnitude 3.78 T. What is the x-component of the force on the alpha-particle if it is moving with a velocity
(1.43 i + 8.8 j + 4.16 k) x 104 m/s?
- +a) 1.064E-13 N
- -b) 1.171E-13 N
- -c) 1.288E-13 N
- -d) 1.417E-13 N
- -e) 1.558E-13 N
2) A cyclotron used to accelerate alpha particlesm=6.64 x 10−27kg, q=3.2 x 10−19C) has a radius of 0.388 m and a magneticfield of 1.19 T. What is their maximum kinetic energy?
- -a) 8.491E+00 MeV
- -b) 9.340E+00 MeV
- +c) 1.027E+01 MeV
- -d) 1.130E+01 MeV
- -e) 1.243E+01 MeV
3) A long rigind wire carries a 8 A current. What is the magnetic force per unit length on the wire if a 0.578 T magnetic field is directed 38° away from the wire?
- +a) 2.847E+00 N/m
- -b) 3.132E+00 N/m
- -c) 3.445E+00 N/m
- -d) 3.789E+00 N/m
- -e) 4.168E+00 N/m
QB:Ch 12:V0
[edit | edit source]QB153089888064
- a) Bx= 6.282E-05 T
- b) Bx= 6.910E-05 T
- c) Bx= 7.601E-05 T
- d) Bx= 8.361E-05 T
- e) Bx= 9.198E-05 T
2) A solenoid has 7.170E+04 turns wound around a cylinder of diameter 1.56 cm and length 9 m. The current through the coils is 0.391 A. Define the origin to be the center of the solenoid and neglect end effects as you calculate the line integral alongthe axis from z=−2.73 cm to z=+2.56 cm
- a) 1.414E-04 T-m
- b) 1.556E-04 T-m
- c) 1.711E-04 T-m
- d) 1.882E-04 T-m
- e) 2.071E-04 T-m
- a) By= 1.191E-04 T
- b) By= 1.310E-04 T
- c) By= 1.441E-04 T
- d) By= 1.585E-04 T
- e) By= 1.744E-04 T
KEY:QB:Ch 12:V0
[edit | edit source]QB153089888064
- -a) Bx= 6.282E-05 T
- +b) Bx= 6.910E-05 T
- -c) Bx= 7.601E-05 T
- -d) Bx= 8.361E-05 T
- -e) Bx= 9.198E-05 T
2) A solenoid has 7.170E+04 turns wound around a cylinder of diameter 1.56 cm and length 9 m. The current through the coils is 0.391 A. Define the origin to be the center of the solenoid and neglect end effects as you calculate the line integral alongthe axis from z=−2.73 cm to z=+2.56 cm
- -a) 1.414E-04 T-m
- -b) 1.556E-04 T-m
- -c) 1.711E-04 T-m
- -d) 1.882E-04 T-m
- +e) 2.071E-04 T-m
- +a) By= 1.191E-04 T
- -b) By= 1.310E-04 T
- -c) By= 1.441E-04 T
- -d) By= 1.585E-04 T
- -e) By= 1.744E-04 T
QB:Ch 12:V1
[edit | edit source]QB153089888064
- a) By= 7.035E-05 T
- b) By= 7.739E-05 T
- c) By= 8.512E-05 T
- d) By= 9.364E-05 T
- e) By= 1.030E-04 T
- a) Bx= 7.507E-05 T
- b) Bx= 8.257E-05 T
- c) Bx= 9.083E-05 T
- d) Bx= 9.991E-05 T
- e) Bx= 1.099E-04 T
3) A solenoid has 9.560E+04 turns wound around a cylinder of diameter 1.18 cm and length 12 m. The current through the coils is 0.664 A. Define the origin to be the center of the solenoid and neglect end effects as you calculate the line integral alongthe axis from z=−4.49 cm to z=+3.61 cm
- a) 4.895E-04 T-m
- b) 5.384E-04 T-m
- c) 5.923E-04 T-m
- d) 6.515E-04 T-m
- e) 7.167E-04 T-m
KEY:QB:Ch 12:V1
[edit | edit source]QB153089888064
- -a) By= 7.035E-05 T
- -b) By= 7.739E-05 T
- -c) By= 8.512E-05 T
- +d) By= 9.364E-05 T
- -e) By= 1.030E-04 T
- +a) Bx= 7.507E-05 T
- -b) Bx= 8.257E-05 T
- -c) Bx= 9.083E-05 T
- -d) Bx= 9.991E-05 T
- -e) Bx= 1.099E-04 T
3) A solenoid has 9.560E+04 turns wound around a cylinder of diameter 1.18 cm and length 12 m. The current through the coils is 0.664 A. Define the origin to be the center of the solenoid and neglect end effects as you calculate the line integral alongthe axis from z=−4.49 cm to z=+3.61 cm
- -a) 4.895E-04 T-m
- +b) 5.384E-04 T-m
- -c) 5.923E-04 T-m
- -d) 6.515E-04 T-m
- -e) 7.167E-04 T-m
QB:Ch 12:V2
[edit | edit source]QB153089888064
- a) Bx= 9.053E-05 T
- b) Bx= 9.959E-05 T
- c) Bx= 1.095E-04 T
- d) Bx= 1.205E-04 T
- e) Bx= 1.325E-04 T
- a) By= 9.388E-05 T
- b) By= 1.033E-04 T
- c) By= 1.136E-04 T
- d) By= 1.250E-04 T
- e) By= 1.375E-04 T
3) A solenoid has 9.160E+04 turns wound around a cylinder of diameter 1.64 cm and length 16 m. The current through the coils is 0.873 A. Define the origin to be the center of the solenoid and neglect end effects as you calculate the line integral alongthe axis from z=−1.74 cm to z=+4.75 cm
- a) 3.369E-04 T-m
- b) 3.706E-04 T-m
- c) 4.076E-04 T-m
- d) 4.484E-04 T-m
- e) 4.932E-04 T-m
KEY:QB:Ch 12:V2
[edit | edit source]QB153089888064
- -a) Bx= 9.053E-05 T
- -b) Bx= 9.959E-05 T
- -c) Bx= 1.095E-04 T
- -d) Bx= 1.205E-04 T
- +e) Bx= 1.325E-04 T
- -a) By= 9.388E-05 T
- -b) By= 1.033E-04 T
- -c) By= 1.136E-04 T
- -d) By= 1.250E-04 T
- +e) By= 1.375E-04 T
3) A solenoid has 9.160E+04 turns wound around a cylinder of diameter 1.64 cm and length 16 m. The current through the coils is 0.873 A. Define the origin to be the center of the solenoid and neglect end effects as you calculate the line integral alongthe axis from z=−1.74 cm to z=+4.75 cm
- -a) 3.369E-04 T-m
- -b) 3.706E-04 T-m
- +c) 4.076E-04 T-m
- -d) 4.484E-04 T-m
- -e) 4.932E-04 T-m
QB:Ch 13:V0
[edit | edit source]QB153089888064
1) A long solenoid has a radius of 0.436 m and 87 turns per meter; its current decreases with time according to , where 4 A and 27 s−1.What is the induced electric fied at a distance 0.153 m from the axis at time t=0.02 s ?
- a) 4.785E-04 V/m
- b) 5.264E-04 V/m
- c) 5.790E-04 V/m
- d) 6.369E-04 V/m
- e) 7.006E-04 V/m
2) A spatially uniform magnetic points in the z-direction and oscilates with time as where 3.29 T and 4.720E+03 s−1. Suppose the electric field is always zero at point , and consider a circle of radius 0.658 m that is centered at that point and oriented in a plane perpendicular to the magnetic field. Evaluate the maximum value of the line integral around the circle.
- a) 6.420E+04 V
- b) 7.062E+04 V
- c) 7.768E+04 V
- d) 8.545E+04 V
- e) 9.400E+04 V
3) The current through the windings of a solenoid with n= 2.460E+03 turns per meter is changing at a rate dI/dt=7 A/s. The solenoid is 87 cm long and has a cross-sectional diameter of 3.32 cm. A small coil consisting of N=38turns wraped in a circle of diameter 1.29 cm is placed in the middle of the solenoid such that the plane of the coil is perpendicular to the central axis of the solenoid. Assume that the infinite-solenoid approximation is valid inside the small coil. What is the emf induced in the coil?
- a) 7.340E-05 V
- b) 8.075E-05 V
- c) 8.882E-05 V
- d) 9.770E-05 V
- e) 1.075E-04 V
KEY:QB:Ch 13:V0
[edit | edit source]QB153089888064
1) A long solenoid has a radius of 0.436 m and 87 turns per meter; its current decreases with time according to , where 4 A and 27 s−1.What is the induced electric fied at a distance 0.153 m from the axis at time t=0.02 s ?
- -a) 4.785E-04 V/m
- +b) 5.264E-04 V/m
- -c) 5.790E-04 V/m
- -d) 6.369E-04 V/m
- -e) 7.006E-04 V/m
2) A spatially uniform magnetic points in the z-direction and oscilates with time as where 3.29 T and 4.720E+03 s−1. Suppose the electric field is always zero at point , and consider a circle of radius 0.658 m that is centered at that point and oriented in a plane perpendicular to the magnetic field. Evaluate the maximum value of the line integral around the circle.
- +a) 6.420E+04 V
- -b) 7.062E+04 V
- -c) 7.768E+04 V
- -d) 8.545E+04 V
- -e) 9.400E+04 V
3) The current through the windings of a solenoid with n= 2.460E+03 turns per meter is changing at a rate dI/dt=7 A/s. The solenoid is 87 cm long and has a cross-sectional diameter of 3.32 cm. A small coil consisting of N=38turns wraped in a circle of diameter 1.29 cm is placed in the middle of the solenoid such that the plane of the coil is perpendicular to the central axis of the solenoid. Assume that the infinite-solenoid approximation is valid inside the small coil. What is the emf induced in the coil?
- -a) 7.340E-05 V
- -b) 8.075E-05 V
- -c) 8.882E-05 V
- -d) 9.770E-05 V
- +e) 1.075E-04 V
QB:Ch 13:V1
[edit | edit source]QB153089888064
1) A long solenoid has a radius of 0.517 m and 23 turns per meter; its current decreases with time according to , where 1 A and 30 s−1.What is the induced electric fied at a distance 0.162 m from the axis at time t=0.0679 s ?
- a) 6.256E-06 V/m
- b) 6.882E-06 V/m
- c) 7.570E-06 V/m
- d) 8.327E-06 V/m
- e) 9.160E-06 V/m
2) The current through the windings of a solenoid with n= 2.210E+03 turns per meter is changing at a rate dI/dt=18 A/s. The solenoid is 65 cm long and has a cross-sectional diameter of 2.2 cm. A small coil consisting of N=36turns wraped in a circle of diameter 1.29 cm is placed in the middle of the solenoid such that the plane of the coil is perpendicular to the central axis of the solenoid. Assume that the infinite-solenoid approximation is valid inside the small coil. What is the emf induced in the coil?
- a) 2.352E-04 V
- b) 2.587E-04 V
- c) 2.846E-04 V
- d) 3.131E-04 V
- e) 3.444E-04 V
3) A spatially uniform magnetic points in the z-direction and oscilates with time as where 3.54 T and 1.860E+03 s−1. Suppose the electric field is always zero at point , and consider a circle of radius 0.642 m that is centered at that point and oriented in a plane perpendicular to the magnetic field. Evaluate the maximum value of the line integral around the circle.
- a) 2.415E+04 V
- b) 2.656E+04 V
- c) 2.922E+04 V
- d) 3.214E+04 V
- e) 3.535E+04 V
KEY:QB:Ch 13:V1
[edit | edit source]QB153089888064
1) A long solenoid has a radius of 0.517 m and 23 turns per meter; its current decreases with time according to , where 1 A and 30 s−1.What is the induced electric fied at a distance 0.162 m from the axis at time t=0.0679 s ?
- -a) 6.256E-06 V/m
- -b) 6.882E-06 V/m
- -c) 7.570E-06 V/m
- -d) 8.327E-06 V/m
- +e) 9.160E-06 V/m
2) The current through the windings of a solenoid with n= 2.210E+03 turns per meter is changing at a rate dI/dt=18 A/s. The solenoid is 65 cm long and has a cross-sectional diameter of 2.2 cm. A small coil consisting of N=36turns wraped in a circle of diameter 1.29 cm is placed in the middle of the solenoid such that the plane of the coil is perpendicular to the central axis of the solenoid. Assume that the infinite-solenoid approximation is valid inside the small coil. What is the emf induced in the coil?
- +a) 2.352E-04 V
- -b) 2.587E-04 V
- -c) 2.846E-04 V
- -d) 3.131E-04 V
- -e) 3.444E-04 V
3) A spatially uniform magnetic points in the z-direction and oscilates with time as where 3.54 T and 1.860E+03 s−1. Suppose the electric field is always zero at point , and consider a circle of radius 0.642 m that is centered at that point and oriented in a plane perpendicular to the magnetic field. Evaluate the maximum value of the line integral around the circle.
- -a) 2.415E+04 V
- +b) 2.656E+04 V
- -c) 2.922E+04 V
- -d) 3.214E+04 V
- -e) 3.535E+04 V
QB:Ch 13:V2
[edit | edit source]QB153089888064
1) A long solenoid has a radius of 0.845 m and 78 turns per meter; its current decreases with time according to , where 3 A and 20 s−1.What is the induced electric fied at a distance 0.214 m from the axis at time t=0.0655 s ?
- a) 1.160E-04 V/m
- b) 1.276E-04 V/m
- c) 1.403E-04 V/m
- d) 1.544E-04 V/m
- e) 1.698E-04 V/m
2) A spatially uniform magnetic points in the z-direction and oscilates with time as where 1.8 T and 1.530E+03 s−1. Suppose the electric field is always zero at point , and consider a circle of radius 0.519 m that is centered at that point and oriented in a plane perpendicular to the magnetic field. Evaluate the maximum value of the line integral around the circle.
- a) 7.422E+03 V
- b) 8.164E+03 V
- c) 8.981E+03 V
- d) 9.879E+03 V
- e) 1.087E+04 V
3) The current through the windings of a solenoid with n= 2.590E+03 turns per meter is changing at a rate dI/dt=11 A/s. The solenoid is 95 cm long and has a cross-sectional diameter of 2.29 cm. A small coil consisting of N=25turns wraped in a circle of diameter 1.15 cm is placed in the middle of the solenoid such that the plane of the coil is perpendicular to the central axis of the solenoid. Assume that the infinite-solenoid approximation is valid inside the small coil. What is the emf induced in the coil?
- a) 6.985E-05 V
- b) 7.683E-05 V
- c) 8.452E-05 V
- d) 9.297E-05 V
- e) 1.023E-04 V
KEY:QB:Ch 13:V2
[edit | edit source]QB153089888064
1) A long solenoid has a radius of 0.845 m and 78 turns per meter; its current decreases with time according to , where 3 A and 20 s−1.What is the induced electric fied at a distance 0.214 m from the axis at time t=0.0655 s ?
- -a) 1.160E-04 V/m
- -b) 1.276E-04 V/m
- -c) 1.403E-04 V/m
- -d) 1.544E-04 V/m
- +e) 1.698E-04 V/m
2) A spatially uniform magnetic points in the z-direction and oscilates with time as where 1.8 T and 1.530E+03 s−1. Suppose the electric field is always zero at point , and consider a circle of radius 0.519 m that is centered at that point and oriented in a plane perpendicular to the magnetic field. Evaluate the maximum value of the line integral around the circle.
- -a) 7.422E+03 V
- -b) 8.164E+03 V
- +c) 8.981E+03 V
- -d) 9.879E+03 V
- -e) 1.087E+04 V
3) The current through the windings of a solenoid with n= 2.590E+03 turns per meter is changing at a rate dI/dt=11 A/s. The solenoid is 95 cm long and has a cross-sectional diameter of 2.29 cm. A small coil consisting of N=25turns wraped in a circle of diameter 1.15 cm is placed in the middle of the solenoid such that the plane of the coil is perpendicular to the central axis of the solenoid. Assume that the infinite-solenoid approximation is valid inside the small coil. What is the emf induced in the coil?
- -a) 6.985E-05 V
- -b) 7.683E-05 V
- -c) 8.452E-05 V
- +d) 9.297E-05 V
- -e) 1.023E-04 V
QB:Ch 14:V0
[edit | edit source]QB153089888064
- a) -8.659E-01 s
- b) -9.525E-01 s
- c) -1.048E+00 s
- d) -1.153E+00 s
- e) -1.268E+00 s
2) A washer has an inner diameter of 2.16 cm and an outer diamter of 4.82 cm. The thickness is where is measured in cm, , and . What is the volume of the washer?
- a) 1.342E+00 cm3
- b) 1.477E+00 cm3
- c) 1.624E+00 cm3
- d) 1.787E+00 cm3
- e) 1.965E+00 cm3
3) In an LC circuit, the self-inductance is 0.0689 H and the capacitance is 2.110E-06 F. At t=0 all the energy is stored in the capacitor, which has a charge of 7.220E-05 C. How long does it take for the capacitor to become completely discharged?
- a) 4.950E-04 s
- b) 5.445E-04 s
- c) 5.989E-04 s
- d) 6.588E-04 s
- e) 7.247E-04 s
KEY:QB:Ch 14:V0
[edit | edit source]QB153089888064
- -a) -8.659E-01 s
- -b) -9.525E-01 s
- +c) -1.048E+00 s
- -d) -1.153E+00 s
- -e) -1.268E+00 s
2) A washer has an inner diameter of 2.16 cm and an outer diamter of 4.82 cm. The thickness is where is measured in cm, , and . What is the volume of the washer?
- -a) 1.342E+00 cm3
- +b) 1.477E+00 cm3
- -c) 1.624E+00 cm3
- -d) 1.787E+00 cm3
- -e) 1.965E+00 cm3
3) In an LC circuit, the self-inductance is 0.0689 H and the capacitance is 2.110E-06 F. At t=0 all the energy is stored in the capacitor, which has a charge of 7.220E-05 C. How long does it take for the capacitor to become completely discharged?
- -a) 4.950E-04 s
- -b) 5.445E-04 s
- +c) 5.989E-04 s
- -d) 6.588E-04 s
- -e) 7.247E-04 s
QB:Ch 14:V1
[edit | edit source]QB153089888064
1) A washer has an inner diameter of 2.46 cm and an outer diamter of 4.24 cm. The thickness is where is measured in cm, , and . What is the volume of the washer?
- a) 7.499E-01 cm3
- b) 8.249E-01 cm3
- c) 9.074E-01 cm3
- d) 9.982E-01 cm3
- e) 1.098E+00 cm3
2) In an LC circuit, the self-inductance is 0.0464 H and the capacitance is 7.350E-06 F. At t=0 all the energy is stored in the capacitor, which has a charge of 3.280E-05 C. How long does it take for the capacitor to become completely discharged?
- a) 8.339E-04 s
- b) 9.173E-04 s
- c) 1.009E-03 s
- d) 1.110E-03 s
- e) 1.221E-03 s
- a) -1.700E+00 s
- b) -1.870E+00 s
- c) -2.057E+00 s
- d) -2.262E+00 s
- e) -2.489E+00 s
KEY:QB:Ch 14:V1
[edit | edit source]QB153089888064
1) A washer has an inner diameter of 2.46 cm and an outer diamter of 4.24 cm. The thickness is where is measured in cm, , and . What is the volume of the washer?
- -a) 7.499E-01 cm3
- -b) 8.249E-01 cm3
- -c) 9.074E-01 cm3
- -d) 9.982E-01 cm3
- +e) 1.098E+00 cm3
2) In an LC circuit, the self-inductance is 0.0464 H and the capacitance is 7.350E-06 F. At t=0 all the energy is stored in the capacitor, which has a charge of 3.280E-05 C. How long does it take for the capacitor to become completely discharged?
- -a) 8.339E-04 s
- +b) 9.173E-04 s
- -c) 1.009E-03 s
- -d) 1.110E-03 s
- -e) 1.221E-03 s
- -a) -1.700E+00 s
- -b) -1.870E+00 s
- -c) -2.057E+00 s
- +d) -2.262E+00 s
- -e) -2.489E+00 s
QB:Ch 14:V2
[edit | edit source]QB153089888064
1) A washer has an inner diameter of 2.6 cm and an outer diamter of 4.17 cm. The thickness is where is measured in cm, , and . What is the volume of the washer?
- a) 7.196E-01 cm3
- b) 7.916E-01 cm3
- c) 8.707E-01 cm3
- d) 9.578E-01 cm3
- e) 1.054E+00 cm3
- a) -1.614E+00 s
- b) -1.775E+00 s
- c) -1.952E+00 s
- d) -2.148E+00 s
- e) -2.362E+00 s
3) In an LC circuit, the self-inductance is 0.0216 H and the capacitance is 6.450E-06 F. At t=0 all the energy is stored in the capacitor, which has a charge of 1.240E-05 C. How long does it take for the capacitor to become completely discharged?
- a) 4.846E-04 s
- b) 5.330E-04 s
- c) 5.863E-04 s
- d) 6.449E-04 s
- e) 7.094E-04 s
KEY:QB:Ch 14:V2
[edit | edit source]QB153089888064
1) A washer has an inner diameter of 2.6 cm and an outer diamter of 4.17 cm. The thickness is where is measured in cm, , and . What is the volume of the washer?
- -a) 7.196E-01 cm3
- -b) 7.916E-01 cm3
- -c) 8.707E-01 cm3
- +d) 9.578E-01 cm3
- -e) 1.054E+00 cm3
- +a) -1.614E+00 s
- -b) -1.775E+00 s
- -c) -1.952E+00 s
- -d) -2.148E+00 s
- -e) -2.362E+00 s
3) In an LC circuit, the self-inductance is 0.0216 H and the capacitance is 6.450E-06 F. At t=0 all the energy is stored in the capacitor, which has a charge of 1.240E-05 C. How long does it take for the capacitor to become completely discharged?
- -a) 4.846E-04 s
- -b) 5.330E-04 s
- +c) 5.863E-04 s
- -d) 6.449E-04 s
- -e) 7.094E-04 s
QB:Ch 15:V0
[edit | edit source]QB153089888064
1) An RLC series combination is driven with an applied voltage of of V=V0sin(ωt), where V0=0.62 V. The resistance, inductance, and capacitance are R =6 Ω, L= 8.10E-03H , and C=6.40E-04 F, respectively. What is the amplitude of the current?
- a) 7.058E-02 A
- b) 7.764E-02 A
- c) 8.540E-02 A
- d) 9.394E-02 A
- e) 1.033E-01 A
2) The output of an ac generator connected to an RLC series combination has a frequency of 5.50E+04 Hz and an amplitude of 2 V. If R =8 Ω, L= 9.60E-03H , and C=8.30E-06 F, what is the rms power transferred to the resistor?
- a) 4.347E-05 Watts
- b) 4.782E-05 Watts
- c) 5.260E-05 Watts
- d) 5.786E-05 Watts
- e) 6.364E-05 Watts
3) The output of an ac generator connected to an RLC series combination has a frequency of 890 Hz and an amplitude of 0.58 V;. If R =9 Ω, L= 2.90E-03H , and C=8.30E-04 F, what is the magnitude (absolute value) of the phase difference between current and emf?
- a) 7.952E-01 &rad;
- b) 8.747E-01 &rad;
- c) 9.622E-01 &rad;
- d) 1.058E+00 &rad;
- e) 1.164E+00 &rad;
KEY:QB:Ch 15:V0
[edit | edit source]QB153089888064
1) An RLC series combination is driven with an applied voltage of of V=V0sin(ωt), where V0=0.62 V. The resistance, inductance, and capacitance are R =6 Ω, L= 8.10E-03H , and C=6.40E-04 F, respectively. What is the amplitude of the current?
- -a) 7.058E-02 A
- -b) 7.764E-02 A
- -c) 8.540E-02 A
- -d) 9.394E-02 A
- +e) 1.033E-01 A
2) The output of an ac generator connected to an RLC series combination has a frequency of 5.50E+04 Hz and an amplitude of 2 V. If R =8 Ω, L= 9.60E-03H , and C=8.30E-06 F, what is the rms power transferred to the resistor?
- -a) 4.347E-05 Watts
- -b) 4.782E-05 Watts
- -c) 5.260E-05 Watts
- +d) 5.786E-05 Watts
- -e) 6.364E-05 Watts
3) The output of an ac generator connected to an RLC series combination has a frequency of 890 Hz and an amplitude of 0.58 V;. If R =9 Ω, L= 2.90E-03H , and C=8.30E-04 F, what is the magnitude (absolute value) of the phase difference between current and emf?
- -a) 7.952E-01 &rad;
- -b) 8.747E-01 &rad;
- -c) 9.622E-01 &rad;
- +d) 1.058E+00 &rad;
- -e) 1.164E+00 &rad;
QB:Ch 15:V1
[edit | edit source]QB153089888064
1) The output of an ac generator connected to an RLC series combination has a frequency of 300 Hz and an amplitude of 0.76 V;. If R =5 Ω, L= 6.10E-03H , and C=5.80E-04 F, what is the magnitude (absolute value) of the phase difference between current and emf?
- a) 7.714E-01 &rad;
- b) 8.486E-01 &rad;
- c) 9.334E-01 &rad;
- d) 1.027E+00 &rad;
- e) 1.129E+00 &rad;
2) The output of an ac generator connected to an RLC series combination has a frequency of 1.90E+04 Hz and an amplitude of 3 V. If R =8 Ω, L= 9.70E-03H , and C=9.70E-06 F, what is the rms power transferred to the resistor?
- a) 7.670E-04 Watts
- b) 8.436E-04 Watts
- c) 9.280E-04 Watts
- d) 1.021E-03 Watts
- e) 1.123E-03 Watts
3) An RLC series combination is driven with an applied voltage of of V=V0sin(ωt), where V0=0.83 V. The resistance, inductance, and capacitance are R =9 Ω, L= 8.50E-03H , and C=7.20E-04 F, respectively. What is the amplitude of the current?
- a) 8.384E-02 A
- b) 9.222E-02 A
- c) 1.014E-01 A
- d) 1.116E-01 A
- e) 1.227E-01 A
KEY:QB:Ch 15:V1
[edit | edit source]QB153089888064
1) The output of an ac generator connected to an RLC series combination has a frequency of 300 Hz and an amplitude of 0.76 V;. If R =5 Ω, L= 6.10E-03H , and C=5.80E-04 F, what is the magnitude (absolute value) of the phase difference between current and emf?
- -a) 7.714E-01 &rad;
- -b) 8.486E-01 &rad;
- -c) 9.334E-01 &rad;
- -d) 1.027E+00 &rad;
- +e) 1.129E+00 &rad;
2) The output of an ac generator connected to an RLC series combination has a frequency of 1.90E+04 Hz and an amplitude of 3 V. If R =8 Ω, L= 9.70E-03H , and C=9.70E-06 F, what is the rms power transferred to the resistor?
- -a) 7.670E-04 Watts
- -b) 8.436E-04 Watts
- -c) 9.280E-04 Watts
- -d) 1.021E-03 Watts
- +e) 1.123E-03 Watts
3) An RLC series combination is driven with an applied voltage of of V=V0sin(ωt), where V0=0.83 V. The resistance, inductance, and capacitance are R =9 Ω, L= 8.50E-03H , and C=7.20E-04 F, respectively. What is the amplitude of the current?
- -a) 8.384E-02 A
- +b) 9.222E-02 A
- -c) 1.014E-01 A
- -d) 1.116E-01 A
- -e) 1.227E-01 A
QB:Ch 15:V2
[edit | edit source]QB153089888064
1) The output of an ac generator connected to an RLC series combination has a frequency of 7.60E+04 Hz and an amplitude of 5 V. If R =6 Ω, L= 3.70E-03H , and C=5.80E-06 F, what is the rms power transferred to the resistor?
- a) 7.239E-04 Watts
- b) 7.963E-04 Watts
- c) 8.759E-04 Watts
- d) 9.635E-04 Watts
- e) 1.060E-03 Watts
2) The output of an ac generator connected to an RLC series combination has a frequency of 970 Hz and an amplitude of 0.11 V;. If R =9 Ω, L= 8.50E-03H , and C=7.00E-04 F, what is the magnitude (absolute value) of the phase difference between current and emf?
- a) 1.398E+00 &rad;
- b) 1.538E+00 &rad;
- c) 1.692E+00 &rad;
- d) 1.861E+00 &rad;
- e) 2.047E+00 &rad;
3) An RLC series combination is driven with an applied voltage of of V=V0sin(ωt), where V0=0.25 V. The resistance, inductance, and capacitance are R =3 Ω, L= 2.20E-03H , and C=6.30E-04 F, respectively. What is the amplitude of the current?
- a) 7.576E-02 A
- b) 8.333E-02 A
- c) 9.167E-02 A
- d) 1.008E-01 A
- e) 1.109E-01 A
KEY:QB:Ch 15:V2
[edit | edit source]QB153089888064
1) The output of an ac generator connected to an RLC series combination has a frequency of 7.60E+04 Hz and an amplitude of 5 V. If R =6 Ω, L= 3.70E-03H , and C=5.80E-06 F, what is the rms power transferred to the resistor?
- -a) 7.239E-04 Watts
- -b) 7.963E-04 Watts
- -c) 8.759E-04 Watts
- +d) 9.635E-04 Watts
- -e) 1.060E-03 Watts
2) The output of an ac generator connected to an RLC series combination has a frequency of 970 Hz and an amplitude of 0.11 V;. If R =9 Ω, L= 8.50E-03H , and C=7.00E-04 F, what is the magnitude (absolute value) of the phase difference between current and emf?
- +a) 1.398E+00 &rad;
- -b) 1.538E+00 &rad;
- -c) 1.692E+00 &rad;
- -d) 1.861E+00 &rad;
- -e) 2.047E+00 &rad;
3) An RLC series combination is driven with an applied voltage of of V=V0sin(ωt), where V0=0.25 V. The resistance, inductance, and capacitance are R =3 Ω, L= 2.20E-03H , and C=6.30E-04 F, respectively. What is the amplitude of the current?
- -a) 7.576E-02 A
- +b) 8.333E-02 A
- -c) 9.167E-02 A
- -d) 1.008E-01 A
- -e) 1.109E-01 A
QB:Ch 16:V0
[edit | edit source]QB153089888064
- a) 2.998E-03 A
- b) 3.298E-03 A
- c) 3.628E-03 A
- d) 3.991E-03 A
- e) 4.390E-03 A
2) What is the radiation force on an object that is 8.10E+11 m away from the sun and has cross-sectional area of 0.053 m2? The average power output of the Sun is 3.80E+26 W.
- a) 1.630E-08 N
- b) 1.793E-08 N
- c) 1.972E-08 N
- d) 2.169E-08 N
- e) 2.386E-08 N
3) A 59 kW radio transmitter on Earth sends it signal to a satellite 130 km away. At what distance in the same direction would the signal have the same maximum field strength if the transmitter's output power were increased to 76 kW?
- a) 1.008E+02 km
- b) 1.109E+02 km
- c) 1.219E+02 km
- d) 1.341E+02 km
- e) 1.475E+02 km
KEY:QB:Ch 16:V0
[edit | edit source]QB153089888064
- -a) 2.998E-03 A
- -b) 3.298E-03 A
- -c) 3.628E-03 A
- +d) 3.991E-03 A
- -e) 4.390E-03 A
2) What is the radiation force on an object that is 8.10E+11 m away from the sun and has cross-sectional area of 0.053 m2? The average power output of the Sun is 3.80E+26 W.
- +a) 1.630E-08 N
- -b) 1.793E-08 N
- -c) 1.972E-08 N
- -d) 2.169E-08 N
- -e) 2.386E-08 N
3) A 59 kW radio transmitter on Earth sends it signal to a satellite 130 km away. At what distance in the same direction would the signal have the same maximum field strength if the transmitter's output power were increased to 76 kW?
- -a) 1.008E+02 km
- -b) 1.109E+02 km
- -c) 1.219E+02 km
- -d) 1.341E+02 km
- +e) 1.475E+02 km
QB:Ch 16:V1
[edit | edit source]QB153089888064
1) A 42 kW radio transmitter on Earth sends it signal to a satellite 130 km away. At what distance in the same direction would the signal have the same maximum field strength if the transmitter's output power were increased to 98 kW?
- a) 1.641E+02 km
- b) 1.805E+02 km
- c) 1.986E+02 km
- d) 2.184E+02 km
- e) 2.403E+02 km
2) What is the radiation force on an object that is 6.70E+11 m away from the sun and has cross-sectional area of 0.095 m2? The average power output of the Sun is 3.80E+26 W.
- a) 3.528E-08 N
- b) 3.881E-08 N
- c) 4.269E-08 N
- d) 4.696E-08 N
- e) 5.166E-08 N
- a) 6.394E-02 A
- b) 7.033E-02 A
- c) 7.736E-02 A
- d) 8.510E-02 A
- e) 9.361E-02 A
KEY:QB:Ch 16:V1
[edit | edit source]QB153089888064
1) A 42 kW radio transmitter on Earth sends it signal to a satellite 130 km away. At what distance in the same direction would the signal have the same maximum field strength if the transmitter's output power were increased to 98 kW?
- -a) 1.641E+02 km
- -b) 1.805E+02 km
- +c) 1.986E+02 km
- -d) 2.184E+02 km
- -e) 2.403E+02 km
2) What is the radiation force on an object that is 6.70E+11 m away from the sun and has cross-sectional area of 0.095 m2? The average power output of the Sun is 3.80E+26 W.
- -a) 3.528E-08 N
- -b) 3.881E-08 N
- +c) 4.269E-08 N
- -d) 4.696E-08 N
- -e) 5.166E-08 N
- -a) 6.394E-02 A
- +b) 7.033E-02 A
- -c) 7.736E-02 A
- -d) 8.510E-02 A
- -e) 9.361E-02 A
QB:Ch 16:V2
[edit | edit source]QB153089888064
- a) 7.315E-02 A
- b) 8.047E-02 A
- c) 8.851E-02 A
- d) 9.737E-02 A
- e) 1.071E-01 A
2) A 55 kW radio transmitter on Earth sends it signal to a satellite 130 km away. At what distance in the same direction would the signal have the same maximum field strength if the transmitter's output power were increased to 93 kW?
- a) 1.270E+02 km
- b) 1.397E+02 km
- c) 1.537E+02 km
- d) 1.690E+02 km
- e) 1.859E+02 km
3) What is the radiation force on an object that is 7.40E+11 m away from the sun and has cross-sectional area of 0.082 m2? The average power output of the Sun is 3.80E+26 W.
- a) 2.063E-08 N
- b) 2.270E-08 N
- c) 2.497E-08 N
- d) 2.746E-08 N
- e) 3.021E-08 N
KEY:QB:Ch 16:V2
[edit | edit source]QB153089888064
- -a) 7.315E-02 A
- +b) 8.047E-02 A
- -c) 8.851E-02 A
- -d) 9.737E-02 A
- -e) 1.071E-01 A
2) A 55 kW radio transmitter on Earth sends it signal to a satellite 130 km away. At what distance in the same direction would the signal have the same maximum field strength if the transmitter's output power were increased to 93 kW?
- -a) 1.270E+02 km
- -b) 1.397E+02 km
- -c) 1.537E+02 km
- +d) 1.690E+02 km
- -e) 1.859E+02 km
3) What is the radiation force on an object that is 7.40E+11 m away from the sun and has cross-sectional area of 0.082 m2? The average power output of the Sun is 3.80E+26 W.
- -a) 2.063E-08 N
- -b) 2.270E-08 N
- -c) 2.497E-08 N
- -d) 2.746E-08 N
- +e) 3.021E-08 N