Jump to content

Quizbank/Electricity and Magnetism (calculus based)/QB153089888055

From Wikiversity

QB153089888055

QB:Ch 5:V0

[edit | edit source]

QB153089888055

1)
 
is an integral that calculates the z-component of the electric field at point P situated above the x-axis where a charged rod of length (a+b) is located. The distance between point P and the x-axis is z=1.5 m. Evaluate at x=1.1 m if a=0.62 m, b=1.3 m. The total charge on the rod is 7 nC.
a) 6.311E+00 V/m2
b) 6.943E+00 V/m2
c) 7.637E+00 V/m2
d) 8.401E+00 V/m2
e) 9.241E+00 V/m2
2)
Three small charged objects are placed as shown, where , and . What is the magnitude of the net force on if , , and ?
a) 1.473E-14 N
b) 1.620E-14 N
c) 1.782E-14 N
d) 1.960E-14 N
e) 2.156E-14 N
3)
Three small charged objects are placed as shown, where , and .what angle does the force on make above the axis if , , and ?
a) 5.569E+01 degrees
b) 6.125E+01 degrees
c) 6.738E+01 degrees
d) 7.412E+01 degrees
e) 8.153E+01 degrees

KEY:QB:Ch 5:V0

[edit | edit source]

QB153089888055

1)
 
is an integral that calculates the z-component of the electric field at point P situated above the x-axis where a charged rod of length (a+b) is located. The distance between point P and the x-axis is z=1.5 m. Evaluate at x=1.1 m if a=0.62 m, b=1.3 m. The total charge on the rod is 7 nC.
-a) 6.311E+00 V/m2
-b) 6.943E+00 V/m2
+c) 7.637E+00 V/m2
-d) 8.401E+00 V/m2
-e) 9.241E+00 V/m2
2)
Three small charged objects are placed as shown, where , and . What is the magnitude of the net force on if , , and ?
-a) 1.473E-14 N
-b) 1.620E-14 N
-c) 1.782E-14 N
-d) 1.960E-14 N
+e) 2.156E-14 N
3)
Three small charged objects are placed as shown, where , and .what angle does the force on make above the axis if , , and ?
-a) 5.569E+01 degrees
-b) 6.125E+01 degrees
+c) 6.738E+01 degrees
-d) 7.412E+01 degrees
-e) 8.153E+01 degrees

QB:Ch 5:V1

[edit | edit source]

QB153089888055

1)
Three small charged objects are placed as shown, where , and . What is the magnitude of the net force on if , , and ?
a) 3.391E-14 N
b) 3.731E-14 N
c) 4.104E-14 N
d) 4.514E-14 N
e) 4.965E-14 N
2)
 
is an integral that calculates the z-component of the electric field at point P situated above the x-axis where a charged rod of length (a+b) is located. The distance between point P and the x-axis is z=1.8 m. Evaluate at x=0.5 m if a=0.67 m, b=2.4 m. The total charge on the rod is 9 nC.
a) 5.465E+00 V/m2
b) 6.012E+00 V/m2
c) 6.613E+00 V/m2
d) 7.274E+00 V/m2
e) 8.002E+00 V/m2
3)
Three small charged objects are placed as shown, where , and .what angle does the force on make above the axis if , , and ?
a) 3.629E+01 degrees
b) 3.992E+01 degrees
c) 4.391E+01 degrees
d) 4.830E+01 degrees
e) 5.313E+01 degrees

KEY:QB:Ch 5:V1

[edit | edit source]

QB153089888055

1)
Three small charged objects are placed as shown, where , and . What is the magnitude of the net force on if , , and ?
-a) 3.391E-14 N
-b) 3.731E-14 N
-c) 4.104E-14 N
+d) 4.514E-14 N
-e) 4.965E-14 N
2)
 
is an integral that calculates the z-component of the electric field at point P situated above the x-axis where a charged rod of length (a+b) is located. The distance between point P and the x-axis is z=1.8 m. Evaluate at x=0.5 m if a=0.67 m, b=2.4 m. The total charge on the rod is 9 nC.
-a) 5.465E+00 V/m2
-b) 6.012E+00 V/m2
-c) 6.613E+00 V/m2
+d) 7.274E+00 V/m2
-e) 8.002E+00 V/m2
3)
Three small charged objects are placed as shown, where , and .what angle does the force on make above the axis if , , and ?
-a) 3.629E+01 degrees
-b) 3.992E+01 degrees
-c) 4.391E+01 degrees
-d) 4.830E+01 degrees
+e) 5.313E+01 degrees

QB:Ch 5:V2

[edit | edit source]

QB153089888055

1)
Three small charged objects are placed as shown, where , and . What is the magnitude of the net force on if , , and ?
a) 1.028E-14 N
b) 1.130E-14 N
c) 1.244E-14 N
d) 1.368E-14 N
e) 1.505E-14 N
2)
 
is an integral that calculates the z-component of the electric field at point P situated above the x-axis where a charged rod of length (a+b) is located. The distance between point P and the x-axis is z=1.5 m. Evaluate at x=1.0 m if a=1.1 m, b=1.4 m. The total charge on the rod is 5 nC.
a) 4.602E+00 V/m2
b) 5.062E+00 V/m2
c) 5.568E+00 V/m2
d) 6.125E+00 V/m2
e) 6.738E+00 V/m2
3)
Three small charged objects are placed as shown, where , and .what angle does the force on make above the axis if , , and ?
a) 5.569E+01 degrees
b) 6.125E+01 degrees
c) 6.738E+01 degrees
d) 7.412E+01 degrees
e) 8.153E+01 degrees

KEY:QB:Ch 5:V2

[edit | edit source]

QB153089888055

1)
Three small charged objects are placed as shown, where , and . What is the magnitude of the net force on if , , and ?
-a) 1.028E-14 N
-b) 1.130E-14 N
-c) 1.244E-14 N
-d) 1.368E-14 N
+e) 1.505E-14 N
2)
 
is an integral that calculates the z-component of the electric field at point P situated above the x-axis where a charged rod of length (a+b) is located. The distance between point P and the x-axis is z=1.5 m. Evaluate at x=1.0 m if a=1.1 m, b=1.4 m. The total charge on the rod is 5 nC.
+a) 4.602E+00 V/m2
-b) 5.062E+00 V/m2
-c) 5.568E+00 V/m2
-d) 6.125E+00 V/m2
-e) 6.738E+00 V/m2
3)
Three small charged objects are placed as shown, where , and .what angle does the force on make above the axis if , , and ?
-a) 5.569E+01 degrees
-b) 6.125E+01 degrees
+c) 6.738E+01 degrees
-d) 7.412E+01 degrees
-e) 8.153E+01 degrees

QB:Ch 6:V0

[edit | edit source]

QB153089888055

1) Five concentric spherical shells have radius of exactly (1m, 2m, 3m, 4m, 5m).Each is uniformly charged with 9.0 nano-Coulombs. What is the magnitude of the electric field at a distance of 5.5 m from the center of the shells?

a) 9.144E+00 N/C
b) 1.006E+01 N/C
c) 1.106E+01 N/C
d) 1.217E+01 N/C
e) 1.339E+01 N/C

2) A non-conducting sphere of radius R=1.4 m has a non-uniform charge density that varies with the distnce from its center as given by ρ(r)=ar1.6 (r≤R) where a=3 nC·m-1.4. What is the magnitude of the electric field at a distance of 1.3 m from the center?

a) 1.457E+02 N/C
b) 1.603E+02 N/C
c) 1.763E+02 N/C
d) 1.939E+02 N/C
e) 2.133E+02 N/C
3)
Each surface of the rectangular box shown is aligned with the xyz coordinate system. Two surfaces occupy identical rectangles in the planes x=0 and x=x1=2.6 m. The other four surfaces are rectangles in y=y0=1.7 m, y=y1=5.4 m, z=z0=1.4 m, and z=z1=5.6 m. The surfaces in the yz plane each have area 16.0m2. Those in the xy plane have area 9.6m2 ,and those in the zx plane have area 11.0m2. An electric field of magnitude 15 N/C has components in the y and z directions and is directed at 33° from the z-axis. What is the magnitude (absolute value) of the electric flux through a surface aligned parallel to the xz plane?
a) 8.921E+01 N·m2/C
b) 9.813E+01 N·m2/C
c) 1.079E+02 N·m2/C
d) 1.187E+02 N·m2/C
e) 1.306E+02 N·m2/C

KEY:QB:Ch 6:V0

[edit | edit source]

QB153089888055

1) Five concentric spherical shells have radius of exactly (1m, 2m, 3m, 4m, 5m).Each is uniformly charged with 9.0 nano-Coulombs. What is the magnitude of the electric field at a distance of 5.5 m from the center of the shells?

-a) 9.144E+00 N/C
-b) 1.006E+01 N/C
-c) 1.106E+01 N/C
-d) 1.217E+01 N/C
+e) 1.339E+01 N/C

2) A non-conducting sphere of radius R=1.4 m has a non-uniform charge density that varies with the distnce from its center as given by ρ(r)=ar1.6 (r≤R) where a=3 nC·m-1.4. What is the magnitude of the electric field at a distance of 1.3 m from the center?

+a) 1.457E+02 N/C
-b) 1.603E+02 N/C
-c) 1.763E+02 N/C
-d) 1.939E+02 N/C
-e) 2.133E+02 N/C
3)
Each surface of the rectangular box shown is aligned with the xyz coordinate system. Two surfaces occupy identical rectangles in the planes x=0 and x=x1=2.6 m. The other four surfaces are rectangles in y=y0=1.7 m, y=y1=5.4 m, z=z0=1.4 m, and z=z1=5.6 m. The surfaces in the yz plane each have area 16.0m2. Those in the xy plane have area 9.6m2 ,and those in the zx plane have area 11.0m2. An electric field of magnitude 15 N/C has components in the y and z directions and is directed at 33° from the z-axis. What is the magnitude (absolute value) of the electric flux through a surface aligned parallel to the xz plane?
+a) 8.921E+01 N·m2/C
-b) 9.813E+01 N·m2/C
-c) 1.079E+02 N·m2/C
-d) 1.187E+02 N·m2/C
-e) 1.306E+02 N·m2/C

QB:Ch 6:V1

[edit | edit source]

QB153089888055

1) Five concentric spherical shells have radius of exactly (1m, 2m, 3m, 4m, 5m).Each is uniformly charged with 7.2 nano-Coulombs. What is the magnitude of the electric field at a distance of 4.6 m from the center of the shells?

a) 1.114E+01 N/C
b) 1.225E+01 N/C
c) 1.347E+01 N/C
d) 1.482E+01 N/C
e) 1.630E+01 N/C

2) A non-conducting sphere of radius R=3.9 m has a non-uniform charge density that varies with the distnce from its center as given by ρ(r)=ar1.4 (r≤R) where a=2 nC·m-1.6. What is the magnitude of the electric field at a distance of 2.6 m from the center?

a) 3.821E+02 N/C
b) 4.203E+02 N/C
c) 4.624E+02 N/C
d) 5.086E+02 N/C
e) 5.594E+02 N/C
3)
Each surface of the rectangular box shown is aligned with the xyz coordinate system. Two surfaces occupy identical rectangles in the planes x=0 and x=x1=2.9 m. The other four surfaces are rectangles in y=y0=1.7 m, y=y1=5.9 m, z=z0=1.3 m, and z=z1=5.3 m. The surfaces in the yz plane each have area 17.0m2. Those in the xy plane have area 12.0m2 ,and those in the zx plane have area 12.0m2. An electric field of magnitude 5 N/C has components in the y and z directions and is directed at 26° from the z-axis. What is the magnitude (absolute value) of the electric flux through a surface aligned parallel to the xz plane?
a) 1.737E+01 N·m2/C
b) 1.910E+01 N·m2/C
c) 2.101E+01 N·m2/C
d) 2.311E+01 N·m2/C
e) 2.543E+01 N·m2/C

KEY:QB:Ch 6:V1

[edit | edit source]

QB153089888055

1) Five concentric spherical shells have radius of exactly (1m, 2m, 3m, 4m, 5m).Each is uniformly charged with 7.2 nano-Coulombs. What is the magnitude of the electric field at a distance of 4.6 m from the center of the shells?

-a) 1.114E+01 N/C
+b) 1.225E+01 N/C
-c) 1.347E+01 N/C
-d) 1.482E+01 N/C
-e) 1.630E+01 N/C

2) A non-conducting sphere of radius R=3.9 m has a non-uniform charge density that varies with the distnce from its center as given by ρ(r)=ar1.4 (r≤R) where a=2 nC·m-1.6. What is the magnitude of the electric field at a distance of 2.6 m from the center?

-a) 3.821E+02 N/C
-b) 4.203E+02 N/C
-c) 4.624E+02 N/C
+d) 5.086E+02 N/C
-e) 5.594E+02 N/C
3)
Each surface of the rectangular box shown is aligned with the xyz coordinate system. Two surfaces occupy identical rectangles in the planes x=0 and x=x1=2.9 m. The other four surfaces are rectangles in y=y0=1.7 m, y=y1=5.9 m, z=z0=1.3 m, and z=z1=5.3 m. The surfaces in the yz plane each have area 17.0m2. Those in the xy plane have area 12.0m2 ,and those in the zx plane have area 12.0m2. An electric field of magnitude 5 N/C has components in the y and z directions and is directed at 26° from the z-axis. What is the magnitude (absolute value) of the electric flux through a surface aligned parallel to the xz plane?
-a) 1.737E+01 N·m2/C
-b) 1.910E+01 N·m2/C
-c) 2.101E+01 N·m2/C
-d) 2.311E+01 N·m2/C
+e) 2.543E+01 N·m2/C

QB:Ch 6:V2

[edit | edit source]

QB153089888055

1) A non-conducting sphere of radius R=3.7 m has a non-uniform charge density that varies with the distnce from its center as given by ρ(r)=ar1.4 (r≤R) where a=2 nC·m-1.6. What is the magnitude of the electric field at a distance of 3.1 m from the center?

a) 6.411E+02 N/C
b) 7.052E+02 N/C
c) 7.757E+02 N/C
d) 8.533E+02 N/C
e) 9.386E+02 N/C
2)
Each surface of the rectangular box shown is aligned with the xyz coordinate system. Two surfaces occupy identical rectangles in the planes x=0 and x=x1=2.4 m. The other four surfaces are rectangles in y=y0=1.3 m, y=y1=5.7 m, z=z0=1.9 m, and z=z1=5.4 m. The surfaces in the yz plane each have area 15.0m2. Those in the xy plane have area 11.0m2 ,and those in the zx plane have area 8.4m2. An electric field of magnitude 8 N/C has components in the y and z directions and is directed at 26° from the z-axis. What is the magnitude (absolute value) of the electric flux through a surface aligned parallel to the xz plane?
a) 2.012E+01 N·m2/C
b) 2.213E+01 N·m2/C
c) 2.435E+01 N·m2/C
d) 2.678E+01 N·m2/C
e) 2.946E+01 N·m2/C

3) Five concentric spherical shells have radius of exactly (1m, 2m, 3m, 4m, 5m).Each is uniformly charged with 4.7 nano-Coulombs. What is the magnitude of the electric field at a distance of 4.2 m from the center of the shells?

a) 9.592E+00 N/C
b) 1.055E+01 N/C
c) 1.161E+01 N/C
d) 1.277E+01 N/C
e) 1.404E+01 N/C

KEY:QB:Ch 6:V2

[edit | edit source]

QB153089888055

1) A non-conducting sphere of radius R=3.7 m has a non-uniform charge density that varies with the distnce from its center as given by ρ(r)=ar1.4 (r≤R) where a=2 nC·m-1.6. What is the magnitude of the electric field at a distance of 3.1 m from the center?

-a) 6.411E+02 N/C
-b) 7.052E+02 N/C
+c) 7.757E+02 N/C
-d) 8.533E+02 N/C
-e) 9.386E+02 N/C
2)
Each surface of the rectangular box shown is aligned with the xyz coordinate system. Two surfaces occupy identical rectangles in the planes x=0 and x=x1=2.4 m. The other four surfaces are rectangles in y=y0=1.3 m, y=y1=5.7 m, z=z0=1.9 m, and z=z1=5.4 m. The surfaces in the yz plane each have area 15.0m2. Those in the xy plane have area 11.0m2 ,and those in the zx plane have area 8.4m2. An electric field of magnitude 8 N/C has components in the y and z directions and is directed at 26° from the z-axis. What is the magnitude (absolute value) of the electric flux through a surface aligned parallel to the xz plane?
-a) 2.012E+01 N·m2/C
-b) 2.213E+01 N·m2/C
-c) 2.435E+01 N·m2/C
-d) 2.678E+01 N·m2/C
+e) 2.946E+01 N·m2/C

3) Five concentric spherical shells have radius of exactly (1m, 2m, 3m, 4m, 5m).Each is uniformly charged with 4.7 nano-Coulombs. What is the magnitude of the electric field at a distance of 4.2 m from the center of the shells?

+a) 9.592E+00 N/C
-b) 1.055E+01 N/C
-c) 1.161E+01 N/C
-d) 1.277E+01 N/C
-e) 1.404E+01 N/C

QB:Ch 7:V0

[edit | edit source]

QB153089888055

1)
A diploe has a charge magnitude of q=9 nC and a separation distance of d=4.31 cm. The dipole is centered at the origin and points in the y-direction as shown. What is the electric potential at the point (x=3.47 cm, y=2.15 cm)? Note that following the textbook's example, the y-value of the field point at 2.15 cm matches the disance of the positive charge above the x-axis.
a) 8.672E+02 V
b) 9.539E+02 V
c) 1.049E+03 V
d) 1.154E+03 V
e) 1.270E+03 V

2) If a 14 nC charge is situated at the origin, the equipotential surface for V(x,y,z)=26 V is x2 + y2 + z2 = R2, where R=

a) 3.636E+00 m
b) 4.000E+00 m
c) 4.399E+00 m
d) 4.839E+00 m
e) 5.323E+00 m

3) Calculate the final speed of a free electron accelerated from rest through a potential difference of 69 V.

a) 3.365E+06 m/s
b) 3.701E+06 m/s
c) 4.072E+06 m/s
d) 4.479E+06 m/s
e) 4.927E+06 m/s

KEY:QB:Ch 7:V0

[edit | edit source]

QB153089888055

1)
A diploe has a charge magnitude of q=9 nC and a separation distance of d=4.31 cm. The dipole is centered at the origin and points in the y-direction as shown. What is the electric potential at the point (x=3.47 cm, y=2.15 cm)? Note that following the textbook's example, the y-value of the field point at 2.15 cm matches the disance of the positive charge above the x-axis.
+a) 8.672E+02 V
-b) 9.539E+02 V
-c) 1.049E+03 V
-d) 1.154E+03 V
-e) 1.270E+03 V

2) If a 14 nC charge is situated at the origin, the equipotential surface for V(x,y,z)=26 V is x2 + y2 + z2 = R2, where R=

-a) 3.636E+00 m
-b) 4.000E+00 m
-c) 4.399E+00 m
+d) 4.839E+00 m
-e) 5.323E+00 m

3) Calculate the final speed of a free electron accelerated from rest through a potential difference of 69 V.

-a) 3.365E+06 m/s
-b) 3.701E+06 m/s
-c) 4.072E+06 m/s
-d) 4.479E+06 m/s
+e) 4.927E+06 m/s

QB:Ch 7:V1

[edit | edit source]

QB153089888055

1) If a 28 nC charge is situated at the origin, the equipotential surface for V(x,y,z)=77 V is x2 + y2 + z2 = R2, where R=

a) 2.701E+00 m
b) 2.971E+00 m
c) 3.268E+00 m
d) 3.595E+00 m
e) 3.955E+00 m

2) Calculate the final speed of a free electron accelerated from rest through a potential difference of 83 V.

a) 4.466E+06 m/s
b) 4.912E+06 m/s
c) 5.403E+06 m/s
d) 5.944E+06 m/s
e) 6.538E+06 m/s
3)
A diploe has a charge magnitude of q=5 nC and a separation distance of d=4.09 cm. The dipole is centered at the origin and points in the y-direction as shown. What is the electric potential at the point (x=3.45 cm, y=2.04 cm)? Note that following the textbook's example, the y-value of the field point at 2.04 cm matches the disance of the positive charge above the x-axis.
a) 3.814E+02 V
b) 4.195E+02 V
c) 4.615E+02 V
d) 5.077E+02 V
e) 5.584E+02 V

KEY:QB:Ch 7:V1

[edit | edit source]

QB153089888055

1) If a 28 nC charge is situated at the origin, the equipotential surface for V(x,y,z)=77 V is x2 + y2 + z2 = R2, where R=

-a) 2.701E+00 m
-b) 2.971E+00 m
+c) 3.268E+00 m
-d) 3.595E+00 m
-e) 3.955E+00 m

2) Calculate the final speed of a free electron accelerated from rest through a potential difference of 83 V.

-a) 4.466E+06 m/s
-b) 4.912E+06 m/s
+c) 5.403E+06 m/s
-d) 5.944E+06 m/s
-e) 6.538E+06 m/s
3)
A diploe has a charge magnitude of q=5 nC and a separation distance of d=4.09 cm. The dipole is centered at the origin and points in the y-direction as shown. What is the electric potential at the point (x=3.45 cm, y=2.04 cm)? Note that following the textbook's example, the y-value of the field point at 2.04 cm matches the disance of the positive charge above the x-axis.
-a) 3.814E+02 V
-b) 4.195E+02 V
+c) 4.615E+02 V
-d) 5.077E+02 V
-e) 5.584E+02 V

QB:Ch 7:V2

[edit | edit source]

QB153089888055

1) Calculate the final speed of a free electron accelerated from rest through a potential difference of 19 V.

a) 1.942E+06 m/s
b) 2.137E+06 m/s
c) 2.350E+06 m/s
d) 2.585E+06 m/s
e) 2.844E+06 m/s
2)
A diploe has a charge magnitude of q=5 nC and a separation distance of d=4.39 cm. The dipole is centered at the origin and points in the y-direction as shown. What is the electric potential at the point (x=3.56 cm, y=2.19 cm)? Note that following the textbook's example, the y-value of the field point at 2.19 cm matches the disance of the positive charge above the x-axis.
a) 3.852E+02 V
b) 4.238E+02 V
c) 4.661E+02 V
d) 5.127E+02 V
e) 5.640E+02 V

3) If a 29 nC charge is situated at the origin, the equipotential surface for V(x,y,z)=81 V is x2 + y2 + z2 = R2, where R=

a) 3.218E+00 m
b) 3.540E+00 m
c) 3.893E+00 m
d) 4.283E+00 m
e) 4.711E+00 m

KEY:QB:Ch 7:V2

[edit | edit source]

QB153089888055

1) Calculate the final speed of a free electron accelerated from rest through a potential difference of 19 V.

-a) 1.942E+06 m/s
-b) 2.137E+06 m/s
-c) 2.350E+06 m/s
+d) 2.585E+06 m/s
-e) 2.844E+06 m/s
2)
A diploe has a charge magnitude of q=5 nC and a separation distance of d=4.39 cm. The dipole is centered at the origin and points in the y-direction as shown. What is the electric potential at the point (x=3.56 cm, y=2.19 cm)? Note that following the textbook's example, the y-value of the field point at 2.19 cm matches the disance of the positive charge above the x-axis.
-a) 3.852E+02 V
-b) 4.238E+02 V
+c) 4.661E+02 V
-d) 5.127E+02 V
-e) 5.640E+02 V

3) If a 29 nC charge is situated at the origin, the equipotential surface for V(x,y,z)=81 V is x2 + y2 + z2 = R2, where R=

+a) 3.218E+00 m
-b) 3.540E+00 m
-c) 3.893E+00 m
-d) 4.283E+00 m
-e) 4.711E+00 m

QB:Ch 8:V0

[edit | edit source]

QB153089888055

1)
What is the net capacitance if C1=3.54 μF, C2=3.53 μF, and C3=3.65 μF in the configuration shown?
a) 3.700E+00 μF
b) 4.070E+00 μF
c) 4.477E+00 μF
d) 4.925E+00 μF
e) 5.417E+00 μF
2)
In the figure shown C1=16.9 μF, C2=2.86 μF, and C3=5.1 μF. The voltage source provides ε=9.98 V. What is the energy stored in C2?
a) 1.764E+01 μJ
b) 1.940E+01 μJ
c) 2.134E+01 μJ
d) 2.348E+01 μJ
e) 2.583E+01 μJ
3)
In the figure shown C1=17.7 μF, C2=2.5 μF, and C3=5.0 μF. The voltage source provides ε=12.8 V. What is the charge on C1?
a) 5.066E+01 μC
b) 5.573E+01 μC
c) 6.130E+01 μC
d) 6.743E+01 μC
e) 7.417E+01 μC

KEY:QB:Ch 8:V0

[edit | edit source]

QB153089888055

1)
What is the net capacitance if C1=3.54 μF, C2=3.53 μF, and C3=3.65 μF in the configuration shown?
-a) 3.700E+00 μF
-b) 4.070E+00 μF
-c) 4.477E+00 μF
-d) 4.925E+00 μF
+e) 5.417E+00 μF
2)
In the figure shown C1=16.9 μF, C2=2.86 μF, and C3=5.1 μF. The voltage source provides ε=9.98 V. What is the energy stored in C2?
-a) 1.764E+01 μJ
+b) 1.940E+01 μJ
-c) 2.134E+01 μJ
-d) 2.348E+01 μJ
-e) 2.583E+01 μJ
3)
In the figure shown C1=17.7 μF, C2=2.5 μF, and C3=5.0 μF. The voltage source provides ε=12.8 V. What is the charge on C1?
-a) 5.066E+01 μC
-b) 5.573E+01 μC
-c) 6.130E+01 μC
+d) 6.743E+01 μC
-e) 7.417E+01 μC

QB:Ch 8:V1

[edit | edit source]

QB153089888055

1)
What is the net capacitance if C1=4.75 μF, C2=2.77 μF, and C3=2.47 μF in the configuration shown?
a) 4.220E+00 μF
b) 4.642E+00 μF
c) 5.106E+00 μF
d) 5.616E+00 μF
e) 6.178E+00 μF
2)
In the figure shown C1=15.0 μF, C2=2.65 μF, and C3=5.67 μF. The voltage source provides ε=7.44 V. What is the charge on C1?
a) 3.982E+01 μC
b) 4.380E+01 μC
c) 4.818E+01 μC
d) 5.300E+01 μC
e) 5.829E+01 μC
3)
In the figure shown C1=16.1 μF, C2=2.14 μF, and C3=5.76 μF. The voltage source provides ε=8.35 V. What is the energy stored in C2?
a) 1.199E+01 μJ
b) 1.319E+01 μJ
c) 1.450E+01 μJ
d) 1.595E+01 μJ
e) 1.755E+01 μJ

KEY:QB:Ch 8:V1

[edit | edit source]

QB153089888055

1)
What is the net capacitance if C1=4.75 μF, C2=2.77 μF, and C3=2.47 μF in the configuration shown?
+a) 4.220E+00 μF
-b) 4.642E+00 μF
-c) 5.106E+00 μF
-d) 5.616E+00 μF
-e) 6.178E+00 μF
2)
In the figure shown C1=15.0 μF, C2=2.65 μF, and C3=5.67 μF. The voltage source provides ε=7.44 V. What is the charge on C1?
+a) 3.982E+01 μC
-b) 4.380E+01 μC
-c) 4.818E+01 μC
-d) 5.300E+01 μC
-e) 5.829E+01 μC
3)
In the figure shown C1=16.1 μF, C2=2.14 μF, and C3=5.76 μF. The voltage source provides ε=8.35 V. What is the energy stored in C2?
+a) 1.199E+01 μJ
-b) 1.319E+01 μJ
-c) 1.450E+01 μJ
-d) 1.595E+01 μJ
-e) 1.755E+01 μJ

QB:Ch 8:V2

[edit | edit source]

QB153089888055

1)
In the figure shown C1=19.4 μF, C2=2.49 μF, and C3=4.17 μF. The voltage source provides ε=6.35 V. What is the charge on C1?
a) 2.602E+01 μC
b) 2.862E+01 μC
c) 3.148E+01 μC
d) 3.463E+01 μC
e) 3.809E+01 μC
2)
What is the net capacitance if C1=4.55 μF, C2=4.39 μF, and C3=3.32 μF in the configuration shown?
a) 4.173E+00 μF
b) 4.590E+00 μF
c) 5.049E+00 μF
d) 5.554E+00 μF
e) 6.110E+00 μF
3)
In the figure shown C1=16.3 μF, C2=2.17 μF, and C3=4.67 μF. The voltage source provides ε=8.35 V. What is the energy stored in C2?
a) 8.718E+00 μJ
b) 9.589E+00 μJ
c) 1.055E+01 μJ
d) 1.160E+01 μJ
e) 1.276E+01 μJ

KEY:QB:Ch 8:V2

[edit | edit source]

QB153089888055

1)
In the figure shown C1=19.4 μF, C2=2.49 μF, and C3=4.17 μF. The voltage source provides ε=6.35 V. What is the charge on C1?
-a) 2.602E+01 μC
-b) 2.862E+01 μC
+c) 3.148E+01 μC
-d) 3.463E+01 μC
-e) 3.809E+01 μC
2)
What is the net capacitance if C1=4.55 μF, C2=4.39 μF, and C3=3.32 μF in the configuration shown?
-a) 4.173E+00 μF
-b) 4.590E+00 μF
-c) 5.049E+00 μF
+d) 5.554E+00 μF
-e) 6.110E+00 μF
3)
In the figure shown C1=16.3 μF, C2=2.17 μF, and C3=4.67 μF. The voltage source provides ε=8.35 V. What is the energy stored in C2?
-a) 8.718E+00 μJ
-b) 9.589E+00 μJ
-c) 1.055E+01 μJ
-d) 1.160E+01 μJ
+e) 1.276E+01 μJ

QB:Ch 9:V0

[edit | edit source]

QB153089888055

1) Calculate the resistance of a 12-gauge copper wire that is 30 m long and carries a current of 31 mA. The resistivity of copper is 1.680E-08 Ω·m and 12-gauge wire as a cross-sectional area of 3.31 mm2.

a) 1.384E-01 Ω
b) 1.523E-01 Ω
c) 1.675E-01 Ω
d) 1.842E-01 Ω
e) 2.027E-01 Ω

2) What is the average current involved when a truck battery sets in motion 618 C of charge in 2.28 s while starting an engine?

a) 2.240E+02 A
b) 2.464E+02 A
c) 2.711E+02 A
d) 2.982E+02 A
e) 3.280E+02 A

3) A DC winch moter draws 17 amps at 187 volts as it lifts a 5.600E+03 N weight at a constant speed of 0.381 m/s. Assuming that all the electrical power is either converted into gravitational potential energy or ohmically heats the motor's coils, calculate the coil's resistance.

a) 2.471E+00 Ω
b) 2.718E+00 Ω
c) 2.990E+00 Ω
d) 3.288E+00 Ω
e) 3.617E+00 Ω

KEY:QB:Ch 9:V0

[edit | edit source]

QB153089888055

1) Calculate the resistance of a 12-gauge copper wire that is 30 m long and carries a current of 31 mA. The resistivity of copper is 1.680E-08 Ω·m and 12-gauge wire as a cross-sectional area of 3.31 mm2.

-a) 1.384E-01 Ω
+b) 1.523E-01 Ω
-c) 1.675E-01 Ω
-d) 1.842E-01 Ω
-e) 2.027E-01 Ω

2) What is the average current involved when a truck battery sets in motion 618 C of charge in 2.28 s while starting an engine?

-a) 2.240E+02 A
-b) 2.464E+02 A
+c) 2.711E+02 A
-d) 2.982E+02 A
-e) 3.280E+02 A

3) A DC winch moter draws 17 amps at 187 volts as it lifts a 5.600E+03 N weight at a constant speed of 0.381 m/s. Assuming that all the electrical power is either converted into gravitational potential energy or ohmically heats the motor's coils, calculate the coil's resistance.

-a) 2.471E+00 Ω
-b) 2.718E+00 Ω
-c) 2.990E+00 Ω
-d) 3.288E+00 Ω
+e) 3.617E+00 Ω

QB:Ch 9:V1

[edit | edit source]

QB153089888055

1) What is the average current involved when a truck battery sets in motion 701 C of charge in 4.98 s while starting an engine?

a) 1.280E+02 A
b) 1.408E+02 A
c) 1.548E+02 A
d) 1.703E+02 A
e) 1.874E+02 A

2) Calculate the resistance of a 12-gauge copper wire that is 30 m long and carries a current of 31 mA. The resistivity of copper is 1.680E-08 Ω·m and 12-gauge wire as a cross-sectional area of 3.31 mm2.

a) 1.384E-01 Ω
b) 1.523E-01 Ω
c) 1.675E-01 Ω
d) 1.842E-01 Ω
e) 2.027E-01 Ω

3) A DC winch moter draws 26 amps at 177 volts as it lifts a 4.820E+03 N weight at a constant speed of 0.696 m/s. Assuming that all the electrical power is either converted into gravitational potential energy or ohmically heats the motor's coils, calculate the coil's resistance.

a) 1.677E+00 Ω
b) 1.845E+00 Ω
c) 2.030E+00 Ω
d) 2.233E+00 Ω
e) 2.456E+00 Ω

KEY:QB:Ch 9:V1

[edit | edit source]

QB153089888055

1) What is the average current involved when a truck battery sets in motion 701 C of charge in 4.98 s while starting an engine?

-a) 1.280E+02 A
+b) 1.408E+02 A
-c) 1.548E+02 A
-d) 1.703E+02 A
-e) 1.874E+02 A

2) Calculate the resistance of a 12-gauge copper wire that is 30 m long and carries a current of 31 mA. The resistivity of copper is 1.680E-08 Ω·m and 12-gauge wire as a cross-sectional area of 3.31 mm2.

-a) 1.384E-01 Ω
+b) 1.523E-01 Ω
-c) 1.675E-01 Ω
-d) 1.842E-01 Ω
-e) 2.027E-01 Ω

3) A DC winch moter draws 26 amps at 177 volts as it lifts a 4.820E+03 N weight at a constant speed of 0.696 m/s. Assuming that all the electrical power is either converted into gravitational potential energy or ohmically heats the motor's coils, calculate the coil's resistance.

-a) 1.677E+00 Ω
+b) 1.845E+00 Ω
-c) 2.030E+00 Ω
-d) 2.233E+00 Ω
-e) 2.456E+00 Ω

QB:Ch 9:V2

[edit | edit source]

QB153089888055

1) What is the average current involved when a truck battery sets in motion 775 C of charge in 2.9 s while starting an engine?

a) 2.209E+02 A
b) 2.429E+02 A
c) 2.672E+02 A
d) 2.940E+02 A
e) 3.234E+02 A

2) Calculate the resistance of a 12-gauge copper wire that is 19 m long and carries a current of 59 mA. The resistivity of copper is 1.680E-08 Ω·m and 12-gauge wire as a cross-sectional area of 3.31 mm2.

a) 7.970E-02 Ω
b) 8.767E-02 Ω
c) 9.644E-02 Ω
d) 1.061E-01 Ω
e) 1.167E-01 Ω

3) A DC winch moter draws 27 amps at 190 volts as it lifts a 4.910E+03 N weight at a constant speed of 0.769 m/s. Assuming that all the electrical power is either converted into gravitational potential energy or ohmically heats the motor's coils, calculate the coil's resistance.

a) 1.396E+00 Ω
b) 1.535E+00 Ω
c) 1.689E+00 Ω
d) 1.858E+00 Ω
e) 2.043E+00 Ω

KEY:QB:Ch 9:V2

[edit | edit source]

QB153089888055

1) What is the average current involved when a truck battery sets in motion 775 C of charge in 2.9 s while starting an engine?

-a) 2.209E+02 A
-b) 2.429E+02 A
+c) 2.672E+02 A
-d) 2.940E+02 A
-e) 3.234E+02 A

2) Calculate the resistance of a 12-gauge copper wire that is 19 m long and carries a current of 59 mA. The resistivity of copper is 1.680E-08 Ω·m and 12-gauge wire as a cross-sectional area of 3.31 mm2.

-a) 7.970E-02 Ω
-b) 8.767E-02 Ω
+c) 9.644E-02 Ω
-d) 1.061E-01 Ω
-e) 1.167E-01 Ω

3) A DC winch moter draws 27 amps at 190 volts as it lifts a 4.910E+03 N weight at a constant speed of 0.769 m/s. Assuming that all the electrical power is either converted into gravitational potential energy or ohmically heats the motor's coils, calculate the coil's resistance.

-a) 1.396E+00 Ω
-b) 1.535E+00 Ω
-c) 1.689E+00 Ω
+d) 1.858E+00 Ω
-e) 2.043E+00 Ω

QB:Ch 10:V0

[edit | edit source]

QB153089888055

1) Three resistors, R1 = 1.39 Ω, and R2 = R2 = 3.06 Ω, are connected in parallel to a 6.21 V voltage source. Calculate the power dissipated by the smaller resistor (R1.)

a) 2.293E+01 W
b) 2.522E+01 W
c) 2.774E+01 W
d) 3.052E+01 W
e) 3.357E+01 W
2)
In the circuit shown the voltage across the capaciator is zero at time t=0 when a switch is closed putting the capacitor into contact with a power supply of 129 V. If the combined external and internal resistance is 169 &Omega and the capacitance is 76 mF, how long will it take for the capacitor's voltage to reach 109.0 V?
a) 2.177E+01 s
b) 2.394E+01 s
c) 2.634E+01 s
d) 2.897E+01 s
e) 3.187E+01 s
3)
In the circuit shown V=17.8 V, R1=2.27 Ω, R2=6.79 Ω, and R3=15.1 Ω. What is the power dissipated by R2?
a) 1.446E+01 W
b) 1.591E+01 W
c) 1.750E+01 W
d) 1.925E+01 W
e) 2.117E+01 W

KEY:QB:Ch 10:V0

[edit | edit source]

QB153089888055

1) Three resistors, R1 = 1.39 Ω, and R2 = R2 = 3.06 Ω, are connected in parallel to a 6.21 V voltage source. Calculate the power dissipated by the smaller resistor (R1.)

-a) 2.293E+01 W
-b) 2.522E+01 W
+c) 2.774E+01 W
-d) 3.052E+01 W
-e) 3.357E+01 W
2)
In the circuit shown the voltage across the capaciator is zero at time t=0 when a switch is closed putting the capacitor into contact with a power supply of 129 V. If the combined external and internal resistance is 169 &Omega and the capacitance is 76 mF, how long will it take for the capacitor's voltage to reach 109.0 V?
-a) 2.177E+01 s
+b) 2.394E+01 s
-c) 2.634E+01 s
-d) 2.897E+01 s
-e) 3.187E+01 s
3)
In the circuit shown V=17.8 V, R1=2.27 Ω, R2=6.79 Ω, and R3=15.1 Ω. What is the power dissipated by R2?
-a) 1.446E+01 W
-b) 1.591E+01 W
-c) 1.750E+01 W
-d) 1.925E+01 W
+e) 2.117E+01 W

QB:Ch 10:V1

[edit | edit source]

QB153089888055

1)
In the circuit shown the voltage across the capaciator is zero at time t=0 when a switch is closed putting the capacitor into contact with a power supply of 319 V. If the combined external and internal resistance is 231 &Omega and the capacitance is 64 mF, how long will it take for the capacitor's voltage to reach 175.0 V?
a) 9.718E+00 s
b) 1.069E+01 s
c) 1.176E+01 s
d) 1.293E+01 s
e) 1.423E+01 s

2) Three resistors, R1 = 1.43 Ω, and R2 = R2 = 3.25 Ω, are connected in parallel to a 9.03 V voltage source. Calculate the power dissipated by the smaller resistor (R1.)

a) 5.184E+01 W
b) 5.702E+01 W
c) 6.272E+01 W
d) 6.900E+01 W
e) 7.590E+01 W
3)
In the circuit shown V=17.9 V, R1=1.68 Ω, R2=7.84 Ω, and R3=12.3 Ω. What is the power dissipated by R2?
a) 2.240E+01 W
b) 2.464E+01 W
c) 2.710E+01 W
d) 2.981E+01 W
e) 3.279E+01 W

KEY:QB:Ch 10:V1

[edit | edit source]

QB153089888055

1)
In the circuit shown the voltage across the capaciator is zero at time t=0 when a switch is closed putting the capacitor into contact with a power supply of 319 V. If the combined external and internal resistance is 231 &Omega and the capacitance is 64 mF, how long will it take for the capacitor's voltage to reach 175.0 V?
-a) 9.718E+00 s
-b) 1.069E+01 s
+c) 1.176E+01 s
-d) 1.293E+01 s
-e) 1.423E+01 s

2) Three resistors, R1 = 1.43 Ω, and R2 = R2 = 3.25 Ω, are connected in parallel to a 9.03 V voltage source. Calculate the power dissipated by the smaller resistor (R1.)

-a) 5.184E+01 W
+b) 5.702E+01 W
-c) 6.272E+01 W
-d) 6.900E+01 W
-e) 7.590E+01 W
3)
In the circuit shown V=17.9 V, R1=1.68 Ω, R2=7.84 Ω, and R3=12.3 Ω. What is the power dissipated by R2?
+a) 2.240E+01 W
-b) 2.464E+01 W
-c) 2.710E+01 W
-d) 2.981E+01 W
-e) 3.279E+01 W

QB:Ch 10:V2

[edit | edit source]

QB153089888055

1)
In the circuit shown V=13.5 V, R1=2.66 Ω, R2=7.29 Ω, and R3=14.5 Ω. What is the power dissipated by R2?
a) 7.123E+00 W
b) 7.835E+00 W
c) 8.618E+00 W
d) 9.480E+00 W
e) 1.043E+01 W
2)
In the circuit shown the voltage across the capaciator is zero at time t=0 when a switch is closed putting the capacitor into contact with a power supply of 130 V. If the combined external and internal resistance is 109 &Omega and the capacitance is 59 mF, how long will it take for the capacitor's voltage to reach 69.9 V?
a) 3.728E+00 s
b) 4.101E+00 s
c) 4.511E+00 s
d) 4.962E+00 s
e) 5.458E+00 s

3) Three resistors, R1 = 0.87 Ω, and R2 = R2 = 2.0 Ω, are connected in parallel to a 8.57 V voltage source. Calculate the power dissipated by the smaller resistor (R1.)

a) 6.977E+01 W
b) 7.674E+01 W
c) 8.442E+01 W
d) 9.286E+01 W
e) 1.021E+02 W

KEY:QB:Ch 10:V2

[edit | edit source]

QB153089888055

1)
In the circuit shown V=13.5 V, R1=2.66 Ω, R2=7.29 Ω, and R3=14.5 Ω. What is the power dissipated by R2?
-a) 7.123E+00 W
-b) 7.835E+00 W
-c) 8.618E+00 W
-d) 9.480E+00 W
+e) 1.043E+01 W
2)
In the circuit shown the voltage across the capaciator is zero at time t=0 when a switch is closed putting the capacitor into contact with a power supply of 130 V. If the combined external and internal resistance is 109 &Omega and the capacitance is 59 mF, how long will it take for the capacitor's voltage to reach 69.9 V?
-a) 3.728E+00 s
-b) 4.101E+00 s
-c) 4.511E+00 s
+d) 4.962E+00 s
-e) 5.458E+00 s

3) Three resistors, R1 = 0.87 Ω, and R2 = R2 = 2.0 Ω, are connected in parallel to a 8.57 V voltage source. Calculate the power dissipated by the smaller resistor (R1.)

-a) 6.977E+01 W
-b) 7.674E+01 W
+c) 8.442E+01 W
-d) 9.286E+01 W
-e) 1.021E+02 W

QB:Ch 11:V0

[edit | edit source]

QB153089888055

1) A charged particle in a magnetic field of 3.820E-04 T is moving perpendicular to the magnetic field with a speed of 3.890E+05 m/s. What is the period of orbit if orbital radius is 0.718 m?

a) 8.713E-06 s
b) 9.584E-06 s
c) 1.054E-05 s
d) 1.160E-05 s
e) 1.276E-05 s

2) An alpha-particle (m=6.64x10−27kg, q=3.2x10−19C) briefly enters a uniform magnetic field of magnitude 0.0582 T . It emerges after being deflected by 77° from its original direction. How much time did it spend in that magnetic field?

a) 4.791E-07 s
b) 5.271E-07 s
c) 5.798E-07 s
d) 6.377E-07 s
e) 7.015E-07 s

3) An electron beam (m=9.1 x 10−31kg, q=1.6 x 10−19C) enters a crossed-field velocity selector with magnetic and electric fields of 3.34 mT and 7.430E+03 N/C, respectively. What must the velocity of the electron beam be to transverse the crossed fields undeflected ?

a) 1.671E+06 m/s
b) 1.838E+06 m/s
c) 2.022E+06 m/s
d) 2.225E+06 m/s
e) 2.447E+06 m/s

KEY:QB:Ch 11:V0

[edit | edit source]

QB153089888055

1) A charged particle in a magnetic field of 3.820E-04 T is moving perpendicular to the magnetic field with a speed of 3.890E+05 m/s. What is the period of orbit if orbital radius is 0.718 m?

-a) 8.713E-06 s
-b) 9.584E-06 s
-c) 1.054E-05 s
+d) 1.160E-05 s
-e) 1.276E-05 s

2) An alpha-particle (m=6.64x10−27kg, q=3.2x10−19C) briefly enters a uniform magnetic field of magnitude 0.0582 T . It emerges after being deflected by 77° from its original direction. How much time did it spend in that magnetic field?

+a) 4.791E-07 s
-b) 5.271E-07 s
-c) 5.798E-07 s
-d) 6.377E-07 s
-e) 7.015E-07 s

3) An electron beam (m=9.1 x 10−31kg, q=1.6 x 10−19C) enters a crossed-field velocity selector with magnetic and electric fields of 3.34 mT and 7.430E+03 N/C, respectively. What must the velocity of the electron beam be to transverse the crossed fields undeflected ?

-a) 1.671E+06 m/s
-b) 1.838E+06 m/s
-c) 2.022E+06 m/s
+d) 2.225E+06 m/s
-e) 2.447E+06 m/s

QB:Ch 11:V1

[edit | edit source]

QB153089888055

1) An electron beam (m=9.1 x 10−31kg, q=1.6 x 10−19C) enters a crossed-field velocity selector with magnetic and electric fields of 6.97 mT and 2.240E+03 N/C, respectively. What must the velocity of the electron beam be to transverse the crossed fields undeflected ?

a) 2.656E+05 m/s
b) 2.922E+05 m/s
c) 3.214E+05 m/s
d) 3.535E+05 m/s
e) 3.889E+05 m/s

2) An alpha-particle (m=6.64x10−27kg, q=3.2x10−19C) briefly enters a uniform magnetic field of magnitude 0.0883 T . It emerges after being deflected by 74° from its original direction. How much time did it spend in that magnetic field?

a) 2.280E-07 s
b) 2.508E-07 s
c) 2.759E-07 s
d) 3.035E-07 s
e) 3.339E-07 s

3) A charged particle in a magnetic field of 4.090E-04 T is moving perpendicular to the magnetic field with a speed of 5.980E+05 m/s. What is the period of orbit if orbital radius is 0.633 m?

a) 4.543E-06 s
b) 4.997E-06 s
c) 5.497E-06 s
d) 6.046E-06 s
e) 6.651E-06 s

KEY:QB:Ch 11:V1

[edit | edit source]

QB153089888055

1) An electron beam (m=9.1 x 10−31kg, q=1.6 x 10−19C) enters a crossed-field velocity selector with magnetic and electric fields of 6.97 mT and 2.240E+03 N/C, respectively. What must the velocity of the electron beam be to transverse the crossed fields undeflected ?

-a) 2.656E+05 m/s
-b) 2.922E+05 m/s
+c) 3.214E+05 m/s
-d) 3.535E+05 m/s
-e) 3.889E+05 m/s

2) An alpha-particle (m=6.64x10−27kg, q=3.2x10−19C) briefly enters a uniform magnetic field of magnitude 0.0883 T . It emerges after being deflected by 74° from its original direction. How much time did it spend in that magnetic field?

-a) 2.280E-07 s
-b) 2.508E-07 s
-c) 2.759E-07 s
+d) 3.035E-07 s
-e) 3.339E-07 s

3) A charged particle in a magnetic field of 4.090E-04 T is moving perpendicular to the magnetic field with a speed of 5.980E+05 m/s. What is the period of orbit if orbital radius is 0.633 m?

-a) 4.543E-06 s
-b) 4.997E-06 s
-c) 5.497E-06 s
-d) 6.046E-06 s
+e) 6.651E-06 s

QB:Ch 11:V2

[edit | edit source]

QB153089888055

1) A charged particle in a magnetic field of 4.130E-04 T is moving perpendicular to the magnetic field with a speed of 4.710E+05 m/s. What is the period of orbit if orbital radius is 0.458 m?

a) 6.110E-06 s
b) 6.721E-06 s
c) 7.393E-06 s
d) 8.132E-06 s
e) 8.945E-06 s

2) An electron beam (m=9.1 x 10−31kg, q=1.6 x 10−19C) enters a crossed-field velocity selector with magnetic and electric fields of 2.62 mT and 2.120E+03 N/C, respectively. What must the velocity of the electron beam be to transverse the crossed fields undeflected ?

a) 8.092E+05 m/s
b) 8.901E+05 m/s
c) 9.791E+05 m/s
d) 1.077E+06 m/s
e) 1.185E+06 m/s

3) An alpha-particle (m=6.64x10−27kg, q=3.2x10−19C) briefly enters a uniform magnetic field of magnitude 0.0482 T . It emerges after being deflected by 82° from its original direction. How much time did it spend in that magnetic field?

a) 4.629E-07 s
b) 5.092E-07 s
c) 5.601E-07 s
d) 6.161E-07 s
e) 6.777E-07 s

KEY:QB:Ch 11:V2

[edit | edit source]

QB153089888055

1) A charged particle in a magnetic field of 4.130E-04 T is moving perpendicular to the magnetic field with a speed of 4.710E+05 m/s. What is the period of orbit if orbital radius is 0.458 m?

+a) 6.110E-06 s
-b) 6.721E-06 s
-c) 7.393E-06 s
-d) 8.132E-06 s
-e) 8.945E-06 s

2) An electron beam (m=9.1 x 10−31kg, q=1.6 x 10−19C) enters a crossed-field velocity selector with magnetic and electric fields of 2.62 mT and 2.120E+03 N/C, respectively. What must the velocity of the electron beam be to transverse the crossed fields undeflected ?

+a) 8.092E+05 m/s
-b) 8.901E+05 m/s
-c) 9.791E+05 m/s
-d) 1.077E+06 m/s
-e) 1.185E+06 m/s

3) An alpha-particle (m=6.64x10−27kg, q=3.2x10−19C) briefly enters a uniform magnetic field of magnitude 0.0482 T . It emerges after being deflected by 82° from its original direction. How much time did it spend in that magnetic field?

-a) 4.629E-07 s
-b) 5.092E-07 s
-c) 5.601E-07 s
+d) 6.161E-07 s
-e) 6.777E-07 s

QB:Ch 12:V0

[edit | edit source]

QB153089888055

1) A long coil is tightly wound around a (hypothetical) ferromagnetic cylinder. If n= 16 turns per centimeter and the current applied to the solenoid is 424 mA, the net magnetic field is measured to be 1.24 T. What is the magnetic susceptibility for this case?

a) 1.092E+03
b) 1.201E+03
c) 1.321E+03
d) 1.454E+03
e) 1.599E+03
2)
The numbers (1,2,3) in the figure shown represent three currents flowing in or out of the page: I1 and I3 flow out of the page, and I2 flows into the page, as shown. Two closed paths are shown, labeled and . If I1=2.43 kA, I2=1.81 kA, and I3=3.23 kA, take the path and evalulate the line integral,
  :
a) 1.622E-03 T-m
b) 1.784E-03 T-m
c) 1.963E-03 T-m
d) 2.159E-03 T-m
e) 2.375E-03 T-m

3) Two loops of wire carry the same current of 21 kA, and flow in the same direction. They share a common axis and orientation. One loop has a radius of 0.753 m while the other has a radius of 1.47 m. What is the magnitude of the magnetic field at a point on the axis of both loops, situated between the loops at a distance 0.406 m from the first (smaller) loopif the disance between the loops is 1.38 m?

a) 1.559E-02 T
b) 1.715E-02 T
c) 1.886E-02 T
d) 2.075E-02 T
e) 2.283E-02 T

KEY:QB:Ch 12:V0

[edit | edit source]

QB153089888055

1) A long coil is tightly wound around a (hypothetical) ferromagnetic cylinder. If n= 16 turns per centimeter and the current applied to the solenoid is 424 mA, the net magnetic field is measured to be 1.24 T. What is the magnetic susceptibility for this case?

-a) 1.092E+03
-b) 1.201E+03
-c) 1.321E+03
+d) 1.454E+03
-e) 1.599E+03
2)
The numbers (1,2,3) in the figure shown represent three currents flowing in or out of the page: I1 and I3 flow out of the page, and I2 flows into the page, as shown. Two closed paths are shown, labeled and . If I1=2.43 kA, I2=1.81 kA, and I3=3.23 kA, take the path and evalulate the line integral,
  :
-a) 1.622E-03 T-m
+b) 1.784E-03 T-m
-c) 1.963E-03 T-m
-d) 2.159E-03 T-m
-e) 2.375E-03 T-m

3) Two loops of wire carry the same current of 21 kA, and flow in the same direction. They share a common axis and orientation. One loop has a radius of 0.753 m while the other has a radius of 1.47 m. What is the magnitude of the magnetic field at a point on the axis of both loops, situated between the loops at a distance 0.406 m from the first (smaller) loopif the disance between the loops is 1.38 m?

-a) 1.559E-02 T
+b) 1.715E-02 T
-c) 1.886E-02 T
-d) 2.075E-02 T
-e) 2.283E-02 T

QB:Ch 12:V1

[edit | edit source]

QB153089888055

1) Two loops of wire carry the same current of 29 kA, and flow in the same direction. They share a common axis and orientation. One loop has a radius of 0.76 m while the other has a radius of 1.12 m. What is the magnitude of the magnetic field at a point on the axis of both loops, situated between the loops at a distance 0.544 m from the first (smaller) loopif the disance between the loops is 1.56 m?

a) 1.950E-02 T
b) 2.145E-02 T
c) 2.360E-02 T
d) 2.596E-02 T
e) 2.855E-02 T

2) A long coil is tightly wound around a (hypothetical) ferromagnetic cylinder. If n= 16 turns per centimeter and the current applied to the solenoid is 424 mA, the net magnetic field is measured to be 1.24 T. What is the magnetic susceptibility for this case?

a) 1.092E+03
b) 1.201E+03
c) 1.321E+03
d) 1.454E+03
e) 1.599E+03
3)
The numbers (1,2,3) in the figure shown represent three currents flowing in or out of the page: I1 and I3 flow out of the page, and I2 flows into the page, as shown. Two closed paths are shown, labeled and . If I1=2.66 kA, I2=1.25 kA, and I3=2.74 kA, take the path and evalulate the line integral,
  :
a) 1.547E-03 T-m
b) 1.702E-03 T-m
c) 1.872E-03 T-m
d) 2.060E-03 T-m
e) 2.266E-03 T-m

KEY:QB:Ch 12:V1

[edit | edit source]

QB153089888055

1) Two loops of wire carry the same current of 29 kA, and flow in the same direction. They share a common axis and orientation. One loop has a radius of 0.76 m while the other has a radius of 1.12 m. What is the magnitude of the magnetic field at a point on the axis of both loops, situated between the loops at a distance 0.544 m from the first (smaller) loopif the disance between the loops is 1.56 m?

+a) 1.950E-02 T
-b) 2.145E-02 T
-c) 2.360E-02 T
-d) 2.596E-02 T
-e) 2.855E-02 T

2) A long coil is tightly wound around a (hypothetical) ferromagnetic cylinder. If n= 16 turns per centimeter and the current applied to the solenoid is 424 mA, the net magnetic field is measured to be 1.24 T. What is the magnetic susceptibility for this case?

-a) 1.092E+03
-b) 1.201E+03
-c) 1.321E+03
+d) 1.454E+03
-e) 1.599E+03
3)
The numbers (1,2,3) in the figure shown represent three currents flowing in or out of the page: I1 and I3 flow out of the page, and I2 flows into the page, as shown. Two closed paths are shown, labeled and . If I1=2.66 kA, I2=1.25 kA, and I3=2.74 kA, take the path and evalulate the line integral,
  :
-a) 1.547E-03 T-m
-b) 1.702E-03 T-m
+c) 1.872E-03 T-m
-d) 2.060E-03 T-m
-e) 2.266E-03 T-m

QB:Ch 12:V2

[edit | edit source]

QB153089888055

1) A long coil is tightly wound around a (hypothetical) ferromagnetic cylinder. If n= 27 turns per centimeter and the current applied to the solenoid is 344 mA, the net magnetic field is measured to be 1.12 T. What is the magnetic susceptibility for this case?

a) 7.922E+02
b) 8.714E+02
c) 9.586E+02
d) 1.054E+03
e) 1.160E+03
2)
The numbers (1,2,3) in the figure shown represent three currents flowing in or out of the page: I1 and I3 flow out of the page, and I2 flows into the page, as shown. Two closed paths are shown, labeled and . If I1=2.44 kA, I2=1.1 kA, and I3=1.99 kA, take the path and evalulate the line integral,
  :
a) 1.017E-03 T-m
b) 1.118E-03 T-m
c) 1.230E-03 T-m
d) 1.353E-03 T-m
e) 1.489E-03 T-m

3) Two loops of wire carry the same current of 67 kA, and flow in the same direction. They share a common axis and orientation. One loop has a radius of 0.847 m while the other has a radius of 1.15 m. What is the magnitude of the magnetic field at a point on the axis of both loops, situated between the loops at a distance 0.408 m from the first (smaller) loopif the disance between the loops is 1.15 m?

a) 4.799E-02 T
b) 5.278E-02 T
c) 5.806E-02 T
d) 6.387E-02 T
e) 7.026E-02 T

KEY:QB:Ch 12:V2

[edit | edit source]

QB153089888055

1) A long coil is tightly wound around a (hypothetical) ferromagnetic cylinder. If n= 27 turns per centimeter and the current applied to the solenoid is 344 mA, the net magnetic field is measured to be 1.12 T. What is the magnetic susceptibility for this case?

-a) 7.922E+02
-b) 8.714E+02
+c) 9.586E+02
-d) 1.054E+03
-e) 1.160E+03
2)
The numbers (1,2,3) in the figure shown represent three currents flowing in or out of the page: I1 and I3 flow out of the page, and I2 flows into the page, as shown. Two closed paths are shown, labeled and . If I1=2.44 kA, I2=1.1 kA, and I3=1.99 kA, take the path and evalulate the line integral,
  :
-a) 1.017E-03 T-m
+b) 1.118E-03 T-m
-c) 1.230E-03 T-m
-d) 1.353E-03 T-m
-e) 1.489E-03 T-m

3) Two loops of wire carry the same current of 67 kA, and flow in the same direction. They share a common axis and orientation. One loop has a radius of 0.847 m while the other has a radius of 1.15 m. What is the magnitude of the magnetic field at a point on the axis of both loops, situated between the loops at a distance 0.408 m from the first (smaller) loopif the disance between the loops is 1.15 m?

-a) 4.799E-02 T
-b) 5.278E-02 T
+c) 5.806E-02 T
-d) 6.387E-02 T
-e) 7.026E-02 T

QB:Ch 13:V0

[edit | edit source]

QB153089888055

1) The current through the windings of a solenoid with n= 2.260E+03 turns per meter is changing at a rate dI/dt=12 A/s. The solenoid is 62 cm long and has a cross-sectional diameter of 3.37 cm. A small coil consisting of N=23turns wraped in a circle of diameter 1.7 cm is placed in the middle of the solenoid such that the plane of the coil is perpendicular to the central axis of the solenoid. Assume that the infinite-solenoid approximation is valid inside the small coil. What is the emf induced in the coil?

a) 1.215E-04 V
b) 1.337E-04 V
c) 1.470E-04 V
d) 1.617E-04 V
e) 1.779E-04 V
2)
A cylinder of height 2.15 cm and radius 7.03 cm is cut into a wedge as shown. Now imagine that the volume grows as θ increases while the radius R and height h remains constant. What is the volume's rate of change if point P is 3.83 cm from point O and moves at a speed of 5.7 cm/s? Assume that the wedge grows in such a way as the front face moves by rotating around the axis (that contains point O.)
--(Answer & Why this question is different.)
a) 6.534E+01 cm3/s
b) 7.188E+01 cm3/s
c) 7.907E+01 cm3/s
d) 8.697E+01 cm3/s
e) 9.567E+01 cm3/s

3) A long solenoid has a radius of 0.857 m and 58 turns per meter; its current decreases with time according to , where 1 A and 21 s−1.What is the induced electric fied at a distance 0.144 m from the axis at time t=0.0898 s ?

a) 1.256E-05 V/m
b) 1.382E-05 V/m
c) 1.520E-05 V/m
d) 1.672E-05 V/m
e) 1.839E-05 V/m

KEY:QB:Ch 13:V0

[edit | edit source]

QB153089888055

1) The current through the windings of a solenoid with n= 2.260E+03 turns per meter is changing at a rate dI/dt=12 A/s. The solenoid is 62 cm long and has a cross-sectional diameter of 3.37 cm. A small coil consisting of N=23turns wraped in a circle of diameter 1.7 cm is placed in the middle of the solenoid such that the plane of the coil is perpendicular to the central axis of the solenoid. Assume that the infinite-solenoid approximation is valid inside the small coil. What is the emf induced in the coil?

-a) 1.215E-04 V
-b) 1.337E-04 V
-c) 1.470E-04 V
-d) 1.617E-04 V
+e) 1.779E-04 V
2)
A cylinder of height 2.15 cm and radius 7.03 cm is cut into a wedge as shown. Now imagine that the volume grows as θ increases while the radius R and height h remains constant. What is the volume's rate of change if point P is 3.83 cm from point O and moves at a speed of 5.7 cm/s? Assume that the wedge grows in such a way as the front face moves by rotating around the axis (that contains point O.)
--(Answer & Why this question is different.)
-a) 6.534E+01 cm3/s
-b) 7.188E+01 cm3/s
+c) 7.907E+01 cm3/s
-d) 8.697E+01 cm3/s
-e) 9.567E+01 cm3/s

3) A long solenoid has a radius of 0.857 m and 58 turns per meter; its current decreases with time according to , where 1 A and 21 s−1.What is the induced electric fied at a distance 0.144 m from the axis at time t=0.0898 s ?

-a) 1.256E-05 V/m
-b) 1.382E-05 V/m
-c) 1.520E-05 V/m
+d) 1.672E-05 V/m
-e) 1.839E-05 V/m

QB:Ch 13:V1

[edit | edit source]

QB153089888055

1) A long solenoid has a radius of 0.596 m and 19 turns per meter; its current decreases with time according to , where 5 A and 29 s−1.What is the induced electric fied at a distance 0.209 m from the axis at time t=0.0604 s ?

a) 6.277E-05 V/m
b) 6.904E-05 V/m
c) 7.595E-05 V/m
d) 8.354E-05 V/m
e) 9.190E-05 V/m
2)
A cylinder of height 3.5 cm and radius 5.36 cm is cut into a wedge as shown. Now imagine that the volume grows as θ increases while the radius R and height h remains constant. What is the volume's rate of change if point P is 2.79 cm from point O and moves at a speed of 3.24 cm/s? Assume that the wedge grows in such a way as the front face moves by rotating around the axis (that contains point O.)
--(Answer & Why this question is different.)
a) 5.308E+01 cm3/s
b) 5.839E+01 cm3/s
c) 6.422E+01 cm3/s
d) 7.065E+01 cm3/s
e) 7.771E+01 cm3/s

3) The current through the windings of a solenoid with n= 2.040E+03 turns per meter is changing at a rate dI/dt=19 A/s. The solenoid is 76 cm long and has a cross-sectional diameter of 3.23 cm. A small coil consisting of N=25turns wraped in a circle of diameter 1.67 cm is placed in the middle of the solenoid such that the plane of the coil is perpendicular to the central axis of the solenoid. Assume that the infinite-solenoid approximation is valid inside the small coil. What is the emf induced in the coil?

a) 2.204E-04 V
b) 2.425E-04 V
c) 2.667E-04 V
d) 2.934E-04 V
e) 3.227E-04 V

KEY:QB:Ch 13:V1

[edit | edit source]

QB153089888055

1) A long solenoid has a radius of 0.596 m and 19 turns per meter; its current decreases with time according to , where 5 A and 29 s−1.What is the induced electric fied at a distance 0.209 m from the axis at time t=0.0604 s ?

+a) 6.277E-05 V/m
-b) 6.904E-05 V/m
-c) 7.595E-05 V/m
-d) 8.354E-05 V/m
-e) 9.190E-05 V/m
2)
A cylinder of height 3.5 cm and radius 5.36 cm is cut into a wedge as shown. Now imagine that the volume grows as θ increases while the radius R and height h remains constant. What is the volume's rate of change if point P is 2.79 cm from point O and moves at a speed of 3.24 cm/s? Assume that the wedge grows in such a way as the front face moves by rotating around the axis (that contains point O.)
--(Answer & Why this question is different.)
-a) 5.308E+01 cm3/s
+b) 5.839E+01 cm3/s
-c) 6.422E+01 cm3/s
-d) 7.065E+01 cm3/s
-e) 7.771E+01 cm3/s

3) The current through the windings of a solenoid with n= 2.040E+03 turns per meter is changing at a rate dI/dt=19 A/s. The solenoid is 76 cm long and has a cross-sectional diameter of 3.23 cm. A small coil consisting of N=25turns wraped in a circle of diameter 1.67 cm is placed in the middle of the solenoid such that the plane of the coil is perpendicular to the central axis of the solenoid. Assume that the infinite-solenoid approximation is valid inside the small coil. What is the emf induced in the coil?

-a) 2.204E-04 V
-b) 2.425E-04 V
+c) 2.667E-04 V
-d) 2.934E-04 V
-e) 3.227E-04 V

QB:Ch 13:V2

[edit | edit source]

QB153089888055

1)
A cylinder of height 1.34 cm and radius 2.47 cm is cut into a wedge as shown. Now imagine that the volume grows as θ increases while the radius R and height h remains constant. What is the volume's rate of change if point P is 1.23 cm from point O and moves at a speed of 6.23 cm/s? Assume that the wedge grows in such a way as the front face moves by rotating around the axis (that contains point O.)
--(Answer & Why this question is different.)
a) 1.414E+01 cm3/s
b) 1.556E+01 cm3/s
c) 1.711E+01 cm3/s
d) 1.882E+01 cm3/s
e) 2.070E+01 cm3/s

2) The current through the windings of a solenoid with n= 2.760E+03 turns per meter is changing at a rate dI/dt=8 A/s. The solenoid is 74 cm long and has a cross-sectional diameter of 2.57 cm. A small coil consisting of N=32turns wraped in a circle of diameter 1.49 cm is placed in the middle of the solenoid such that the plane of the coil is perpendicular to the central axis of the solenoid. Assume that the infinite-solenoid approximation is valid inside the small coil. What is the emf induced in the coil?

a) 1.407E-04 V
b) 1.548E-04 V
c) 1.703E-04 V
d) 1.873E-04 V
e) 2.061E-04 V

3) A long solenoid has a radius of 0.793 m and 45 turns per meter; its current decreases with time according to , where 2 A and 29 s−1.What is the induced electric fied at a distance 0.216 m from the axis at time t=0.0208 s ?

a) 1.456E-04 V/m
b) 1.601E-04 V/m
c) 1.762E-04 V/m
d) 1.938E-04 V/m
e) 2.132E-04 V/m

KEY:QB:Ch 13:V2

[edit | edit source]

QB153089888055

1)
A cylinder of height 1.34 cm and radius 2.47 cm is cut into a wedge as shown. Now imagine that the volume grows as θ increases while the radius R and height h remains constant. What is the volume's rate of change if point P is 1.23 cm from point O and moves at a speed of 6.23 cm/s? Assume that the wedge grows in such a way as the front face moves by rotating around the axis (that contains point O.)
--(Answer & Why this question is different.)
-a) 1.414E+01 cm3/s
-b) 1.556E+01 cm3/s
-c) 1.711E+01 cm3/s
-d) 1.882E+01 cm3/s
+e) 2.070E+01 cm3/s

2) The current through the windings of a solenoid with n= 2.760E+03 turns per meter is changing at a rate dI/dt=8 A/s. The solenoid is 74 cm long and has a cross-sectional diameter of 2.57 cm. A small coil consisting of N=32turns wraped in a circle of diameter 1.49 cm is placed in the middle of the solenoid such that the plane of the coil is perpendicular to the central axis of the solenoid. Assume that the infinite-solenoid approximation is valid inside the small coil. What is the emf induced in the coil?

-a) 1.407E-04 V
+b) 1.548E-04 V
-c) 1.703E-04 V
-d) 1.873E-04 V
-e) 2.061E-04 V

3) A long solenoid has a radius of 0.793 m and 45 turns per meter; its current decreases with time according to , where 2 A and 29 s−1.What is the induced electric fied at a distance 0.216 m from the axis at time t=0.0208 s ?

-a) 1.456E-04 V/m
-b) 1.601E-04 V/m
-c) 1.762E-04 V/m
+d) 1.938E-04 V/m
-e) 2.132E-04 V/m

QB:Ch 14:V0

[edit | edit source]

QB153089888055

1) In an LC circuit, the self-inductance is 0.0237 H and the capacitance is 6.140E-06 F. At t=0 all the energy is stored in the capacitor, which has a charge of 8.260E-05 C. How long does it take for the capacitor to become completely discharged?

a) 4.093E-04 s
b) 4.502E-04 s
c) 4.952E-04 s
d) 5.447E-04 s
e) 5.992E-04 s
2)
Suppose switch S1 in the figure shown was closed and remained closed long enough to acheive steady state. At t=0 S1 is opened as as S2 is closed. How long will it take for the energy stored in the inductor to be reduced to 2.01% of its maximum value if ε = 1.45 V , R = 4.4 Ω, and L = 2.36 H?
a) -8.659E-01 s
b) -9.525E-01 s
c) -1.048E+00 s
d) -1.153E+00 s
e) -1.268E+00 s

3) An induced emf of 1.86V is measured across a coil of 59 closely wound turns while the current throuth it increases uniformly from 0.0 to 2.58A in 0.89s. What is the self-inductance of the coil?

a) 4.821E-01 H
b) 5.303E-01 H
c) 5.833E-01 H
d) 6.416E-01 H
e) 7.058E-01 H

KEY:QB:Ch 14:V0

[edit | edit source]

QB153089888055

1) In an LC circuit, the self-inductance is 0.0237 H and the capacitance is 6.140E-06 F. At t=0 all the energy is stored in the capacitor, which has a charge of 8.260E-05 C. How long does it take for the capacitor to become completely discharged?

-a) 4.093E-04 s
-b) 4.502E-04 s
-c) 4.952E-04 s
-d) 5.447E-04 s
+e) 5.992E-04 s
2)
Suppose switch S1 in the figure shown was closed and remained closed long enough to acheive steady state. At t=0 S1 is opened as as S2 is closed. How long will it take for the energy stored in the inductor to be reduced to 2.01% of its maximum value if ε = 1.45 V , R = 4.4 Ω, and L = 2.36 H?
-a) -8.659E-01 s
-b) -9.525E-01 s
+c) -1.048E+00 s
-d) -1.153E+00 s
-e) -1.268E+00 s

3) An induced emf of 1.86V is measured across a coil of 59 closely wound turns while the current throuth it increases uniformly from 0.0 to 2.58A in 0.89s. What is the self-inductance of the coil?

-a) 4.821E-01 H
-b) 5.303E-01 H
-c) 5.833E-01 H
+d) 6.416E-01 H
-e) 7.058E-01 H

QB:Ch 14:V1

[edit | edit source]

QB153089888055

1) An induced emf of 6.75V is measured across a coil of 79 closely wound turns while the current throuth it increases uniformly from 0.0 to 7.76A in 0.115s. What is the self-inductance of the coil?

a) 9.094E-02 H
b) 1.000E-01 H
c) 1.100E-01 H
d) 1.210E-01 H
e) 1.331E-01 H

2) In an LC circuit, the self-inductance is 0.0815 H and the capacitance is 6.520E-06 F. At t=0 all the energy is stored in the capacitor, which has a charge of 8.410E-05 C. How long does it take for the capacitor to become completely discharged?

a) 7.821E-04 s
b) 8.603E-04 s
c) 9.463E-04 s
d) 1.041E-03 s
e) 1.145E-03 s
3)
Suppose switch S1 in the figure shown was closed and remained closed long enough to acheive steady state. At t=0 S1 is opened as as S2 is closed. How long will it take for the energy stored in the inductor to be reduced to 1.43% of its maximum value if ε = 1.64 V , R = 8.3 Ω, and L = 1.61 H?
a) -4.120E-01 s
b) -4.532E-01 s
c) -4.985E-01 s
d) -5.483E-01 s
e) -6.031E-01 s

KEY:QB:Ch 14:V1

[edit | edit source]

QB153089888055

1) An induced emf of 6.75V is measured across a coil of 79 closely wound turns while the current throuth it increases uniformly from 0.0 to 7.76A in 0.115s. What is the self-inductance of the coil?

-a) 9.094E-02 H
+b) 1.000E-01 H
-c) 1.100E-01 H
-d) 1.210E-01 H
-e) 1.331E-01 H

2) In an LC circuit, the self-inductance is 0.0815 H and the capacitance is 6.520E-06 F. At t=0 all the energy is stored in the capacitor, which has a charge of 8.410E-05 C. How long does it take for the capacitor to become completely discharged?

-a) 7.821E-04 s
-b) 8.603E-04 s
-c) 9.463E-04 s
-d) 1.041E-03 s
+e) 1.145E-03 s
3)
Suppose switch S1 in the figure shown was closed and remained closed long enough to acheive steady state. At t=0 S1 is opened as as S2 is closed. How long will it take for the energy stored in the inductor to be reduced to 1.43% of its maximum value if ε = 1.64 V , R = 8.3 Ω, and L = 1.61 H?
+a) -4.120E-01 s
-b) -4.532E-01 s
-c) -4.985E-01 s
-d) -5.483E-01 s
-e) -6.031E-01 s

QB:Ch 14:V2

[edit | edit source]

QB153089888055

1) In an LC circuit, the self-inductance is 0.0424 H and the capacitance is 7.790E-06 F. At t=0 all the energy is stored in the capacitor, which has a charge of 6.230E-05 C. How long does it take for the capacitor to become completely discharged?

a) 6.166E-04 s
b) 6.783E-04 s
c) 7.461E-04 s
d) 8.207E-04 s
e) 9.028E-04 s
2)
Suppose switch S1 in the figure shown was closed and remained closed long enough to acheive steady state. At t=0 S1 is opened as as S2 is closed. How long will it take for the energy stored in the inductor to be reduced to 1.53% of its maximum value if ε = 6.08 V , R = 1.88 Ω, and L = 4.67 H?
a) -5.192E+00 s
b) -5.711E+00 s
c) -6.282E+00 s
d) -6.910E+00 s
e) -7.601E+00 s

3) An induced emf of 2.9V is measured across a coil of 51 closely wound turns while the current throuth it increases uniformly from 0.0 to 6.89A in 0.806s. What is the self-inductance of the coil?

a) 2.549E-01 H
b) 2.804E-01 H
c) 3.084E-01 H
d) 3.392E-01 H
e) 3.732E-01 H

KEY:QB:Ch 14:V2

[edit | edit source]

QB153089888055

1) In an LC circuit, the self-inductance is 0.0424 H and the capacitance is 7.790E-06 F. At t=0 all the energy is stored in the capacitor, which has a charge of 6.230E-05 C. How long does it take for the capacitor to become completely discharged?

-a) 6.166E-04 s
-b) 6.783E-04 s
-c) 7.461E-04 s
-d) 8.207E-04 s
+e) 9.028E-04 s
2)
Suppose switch S1 in the figure shown was closed and remained closed long enough to acheive steady state. At t=0 S1 is opened as as S2 is closed. How long will it take for the energy stored in the inductor to be reduced to 1.53% of its maximum value if ε = 6.08 V , R = 1.88 Ω, and L = 4.67 H?
+a) -5.192E+00 s
-b) -5.711E+00 s
-c) -6.282E+00 s
-d) -6.910E+00 s
-e) -7.601E+00 s

3) An induced emf of 2.9V is measured across a coil of 51 closely wound turns while the current throuth it increases uniformly from 0.0 to 6.89A in 0.806s. What is the self-inductance of the coil?

-a) 2.549E-01 H
-b) 2.804E-01 H
-c) 3.084E-01 H
+d) 3.392E-01 H
-e) 3.732E-01 H

QB:Ch 15:V0

[edit | edit source]

QB153089888055

1) An ac generator produces an emf of amplitude 5 V at a frequency of 52 Hz. What is the maximum amplitude of the current if the generator is connected to a 49 mF inductor?

a) 2.839E-01 A
b) 3.123E-01 A
c) 3.435E-01 A
d) 3.779E-01 A
e) 4.157E-01 A

2) The output of an ac generator connected to an RLC series combination has a frequency of 4.30E+04 Hz and an amplitude of 6 V. If R =6 Ω, L= 5.20E-03H , and C=8.60E-06 F, what is the rms power transferred to the resistor?

a) 1.511E-03 Watts
b) 1.662E-03 Watts
c) 1.828E-03 Watts
d) 2.011E-03 Watts
e) 2.212E-03 Watts

3) The quality factor Q is a dimensionless paramater involving the relative values of the magnitudes of the at three impedances (R, XL, XC). Since Q is calculatedat resonance, XL,  XC and only twoimpedances are involved, Q=≡ω0L/R is definedso that Q is large if the resistance is low. Calculate the Q of an LRC series driven at resonance by an applied voltage of of V=V0sin(ωt), where V0=2 V. The resistance, inductance, and capacitance are R =0.25 Ω, L= 5.40E-03H , and C=3.20E-06 F, respectively.

a) Q = 9.395E+01
b) Q = 1.080E+02
c) Q = 1.242E+02
d) Q = 1.429E+02
e) Q = 1.643E+02

KEY:QB:Ch 15:V0

[edit | edit source]

QB153089888055

1) An ac generator produces an emf of amplitude 5 V at a frequency of 52 Hz. What is the maximum amplitude of the current if the generator is connected to a 49 mF inductor?

-a) 2.839E-01 A
+b) 3.123E-01 A
-c) 3.435E-01 A
-d) 3.779E-01 A
-e) 4.157E-01 A

2) The output of an ac generator connected to an RLC series combination has a frequency of 4.30E+04 Hz and an amplitude of 6 V. If R =6 Ω, L= 5.20E-03H , and C=8.60E-06 F, what is the rms power transferred to the resistor?

-a) 1.511E-03 Watts
-b) 1.662E-03 Watts
-c) 1.828E-03 Watts
-d) 2.011E-03 Watts
+e) 2.212E-03 Watts

3) The quality factor Q is a dimensionless paramater involving the relative values of the magnitudes of the at three impedances (R, XL, XC). Since Q is calculatedat resonance, XL,  XC and only twoimpedances are involved, Q=≡ω0L/R is definedso that Q is large if the resistance is low. Calculate the Q of an LRC series driven at resonance by an applied voltage of of V=V0sin(ωt), where V0=2 V. The resistance, inductance, and capacitance are R =0.25 Ω, L= 5.40E-03H , and C=3.20E-06 F, respectively.

-a) Q = 9.395E+01
-b) Q = 1.080E+02
-c) Q = 1.242E+02
-d) Q = 1.429E+02
+e) Q = 1.643E+02

QB:Ch 15:V1

[edit | edit source]

QB153089888055

1) The output of an ac generator connected to an RLC series combination has a frequency of 4.00E+04 Hz and an amplitude of 8 V. If R =4 Ω, L= 7.00E-03H , and C=6.60E-06 F, what is the rms power transferred to the resistor?

a) 1.146E-03 Watts
b) 1.260E-03 Watts
c) 1.386E-03 Watts
d) 1.525E-03 Watts
e) 1.677E-03 Watts

2) The quality factor Q is a dimensionless paramater involving the relative values of the magnitudes of the at three impedances (R, XL, XC). Since Q is calculatedat resonance, XL,  XC and only twoimpedances are involved, Q=≡ω0L/R is definedso that Q is large if the resistance is low. Calculate the Q of an LRC series driven at resonance by an applied voltage of of V=V0sin(ωt), where V0=2 V. The resistance, inductance, and capacitance are R =0.28 Ω, L= 4.70E-03H , and C=2.50E-06 F, respectively.

a) Q = 1.171E+02
b) Q = 1.347E+02
c) Q = 1.549E+02
d) Q = 1.781E+02
e) Q = 2.048E+02

3) An ac generator produces an emf of amplitude 97 V at a frequency of 64 Hz. What is the maximum amplitude of the current if the generator is connected to a 55 mF inductor?

a) 4.386E+00 A
b) 4.824E+00 A
c) 5.307E+00 A
d) 5.838E+00 A
e) 6.421E+00 A

KEY:QB:Ch 15:V1

[edit | edit source]

QB153089888055

1) The output of an ac generator connected to an RLC series combination has a frequency of 4.00E+04 Hz and an amplitude of 8 V. If R =4 Ω, L= 7.00E-03H , and C=6.60E-06 F, what is the rms power transferred to the resistor?

-a) 1.146E-03 Watts
-b) 1.260E-03 Watts
-c) 1.386E-03 Watts
-d) 1.525E-03 Watts
+e) 1.677E-03 Watts

2) The quality factor Q is a dimensionless paramater involving the relative values of the magnitudes of the at three impedances (R, XL, XC). Since Q is calculatedat resonance, XL,  XC and only twoimpedances are involved, Q=≡ω0L/R is definedso that Q is large if the resistance is low. Calculate the Q of an LRC series driven at resonance by an applied voltage of of V=V0sin(ωt), where V0=2 V. The resistance, inductance, and capacitance are R =0.28 Ω, L= 4.70E-03H , and C=2.50E-06 F, respectively.

-a) Q = 1.171E+02
-b) Q = 1.347E+02
+c) Q = 1.549E+02
-d) Q = 1.781E+02
-e) Q = 2.048E+02

3) An ac generator produces an emf of amplitude 97 V at a frequency of 64 Hz. What is the maximum amplitude of the current if the generator is connected to a 55 mF inductor?

+a) 4.386E+00 A
-b) 4.824E+00 A
-c) 5.307E+00 A
-d) 5.838E+00 A
-e) 6.421E+00 A

QB:Ch 15:V2

[edit | edit source]

QB153089888055

1) An ac generator produces an emf of amplitude 76 V at a frequency of 180 Hz. What is the maximum amplitude of the current if the generator is connected to a 14 mF inductor?

a) 3.606E+00 A
b) 3.967E+00 A
c) 4.364E+00 A
d) 4.800E+00 A
e) 5.280E+00 A

2) The output of an ac generator connected to an RLC series combination has a frequency of 6.00E+04 Hz and an amplitude of 2 V. If R =3 Ω, L= 7.20E-03H , and C=6.50E-06 F, what is the rms power transferred to the resistor?

a) 2.222E-05 Watts
b) 2.444E-05 Watts
c) 2.689E-05 Watts
d) 2.958E-05 Watts
e) 3.253E-05 Watts

3) The quality factor Q is a dimensionless paramater involving the relative values of the magnitudes of the at three impedances (R, XL, XC). Since Q is calculatedat resonance, XL,  XC and only twoimpedances are involved, Q=≡ω0L/R is definedso that Q is large if the resistance is low. Calculate the Q of an LRC series driven at resonance by an applied voltage of of V=V0sin(ωt), where V0=5 V. The resistance, inductance, and capacitance are R =0.17 Ω, L= 4.40E-03H , and C=3.40E-06 F, respectively.

a) Q = 1.391E+02
b) Q = 1.600E+02
c) Q = 1.840E+02
d) Q = 2.116E+02
e) Q = 2.434E+02

KEY:QB:Ch 15:V2

[edit | edit source]

QB153089888055

1) An ac generator produces an emf of amplitude 76 V at a frequency of 180 Hz. What is the maximum amplitude of the current if the generator is connected to a 14 mF inductor?

-a) 3.606E+00 A
-b) 3.967E+00 A
-c) 4.364E+00 A
+d) 4.800E+00 A
-e) 5.280E+00 A

2) The output of an ac generator connected to an RLC series combination has a frequency of 6.00E+04 Hz and an amplitude of 2 V. If R =3 Ω, L= 7.20E-03H , and C=6.50E-06 F, what is the rms power transferred to the resistor?

-a) 2.222E-05 Watts
-b) 2.444E-05 Watts
-c) 2.689E-05 Watts
-d) 2.958E-05 Watts
+e) 3.253E-05 Watts

3) The quality factor Q is a dimensionless paramater involving the relative values of the magnitudes of the at three impedances (R, XL, XC). Since Q is calculatedat resonance, XL,  XC and only twoimpedances are involved, Q=≡ω0L/R is definedso that Q is large if the resistance is low. Calculate the Q of an LRC series driven at resonance by an applied voltage of of V=V0sin(ωt), where V0=5 V. The resistance, inductance, and capacitance are R =0.17 Ω, L= 4.40E-03H , and C=3.40E-06 F, respectively.

-a) Q = 1.391E+02
-b) Q = 1.600E+02
-c) Q = 1.840E+02
+d) Q = 2.116E+02
-e) Q = 2.434E+02

QB:Ch 16:V0

[edit | edit source]

QB153089888055

1)
A parallel plate capacitor with a capicatnce C=1.30E-06 F whose plates have an area A=1.10E+03 m2 and separation d=7.60E-03 m is connected via a swith to a 80 Ω resistor and a battery of voltage V0=5 V as shown in the figure. The current starts to flow at time t=0 when the switch is closed. What is the magnitude of the electric field at time t=2.30E-04?
a) 4.842E+02 V/m
b) 5.326E+02 V/m
c) 5.858E+02 V/m
d) 6.444E+02 V/m
e) 7.089E+02 V/m

2) What is the radiation pressure on an object that is 9.70E+11 m away from the sun and has cross-sectional area of 0.098 m2? The average power output of the Sun is 3.80E+26 W.

a) 2.144E-07 N/m2
b) 2.358E-07 N/m2
c) 2.594E-07 N/m2
d) 2.854E-07 N/m2
e) 3.139E-07 N/m2
3)
A parallel plate capacitor with a capicatnce C=3.80E-06 F whose plates have an area A=2.70E+03 m2 and separation d=6.30E-03 m is connected via a swith to a 85 Ω resistor and a battery of voltage V0=22 V as shown in the figure. The current starts to flow at time t=0 when the switch is closed. What is the magnitude of the displacement current at time t=1.50E-03?
a) 2.058E-03 A
b) 2.263E-03 A
c) 2.490E-03 A
d) 2.739E-03 A
e) 3.013E-03 A

KEY:QB:Ch 16:V0

[edit | edit source]

QB153089888055

1)
A parallel plate capacitor with a capicatnce C=1.30E-06 F whose plates have an area A=1.10E+03 m2 and separation d=7.60E-03 m is connected via a swith to a 80 Ω resistor and a battery of voltage V0=5 V as shown in the figure. The current starts to flow at time t=0 when the switch is closed. What is the magnitude of the electric field at time t=2.30E-04?
-a) 4.842E+02 V/m
-b) 5.326E+02 V/m
+c) 5.858E+02 V/m
-d) 6.444E+02 V/m
-e) 7.089E+02 V/m

2) What is the radiation pressure on an object that is 9.70E+11 m away from the sun and has cross-sectional area of 0.098 m2? The average power output of the Sun is 3.80E+26 W.

+a) 2.144E-07 N/m2
-b) 2.358E-07 N/m2
-c) 2.594E-07 N/m2
-d) 2.854E-07 N/m2
-e) 3.139E-07 N/m2
3)
A parallel plate capacitor with a capicatnce C=3.80E-06 F whose plates have an area A=2.70E+03 m2 and separation d=6.30E-03 m is connected via a swith to a 85 Ω resistor and a battery of voltage V0=22 V as shown in the figure. The current starts to flow at time t=0 when the switch is closed. What is the magnitude of the displacement current at time t=1.50E-03?
-a) 2.058E-03 A
-b) 2.263E-03 A
+c) 2.490E-03 A
-d) 2.739E-03 A
-e) 3.013E-03 A

QB:Ch 16:V1

[edit | edit source]

QB153089888055

1)
A parallel plate capacitor with a capicatnce C=6.90E-06 F whose plates have an area A=5.80E+03 m2 and separation d=7.40E-03 m is connected via a swith to a 26 Ω resistor and a battery of voltage V0=9 V as shown in the figure. The current starts to flow at time t=0 when the switch is closed. What is the magnitude of the displacement current at time t=4.70E-04?
a) 1.894E-02 A
b) 2.083E-02 A
c) 2.291E-02 A
d) 2.520E-02 A
e) 2.773E-02 A

2) What is the radiation pressure on an object that is 9.70E+11 m away from the sun and has cross-sectional area of 0.076 m2? The average power output of the Sun is 3.80E+26 W.

a) 1.611E-07 N/m2
b) 1.772E-07 N/m2
c) 1.949E-07 N/m2
d) 2.144E-07 N/m2
e) 2.358E-07 N/m2
3)
A parallel plate capacitor with a capicatnce C=1.40E-06 F whose plates have an area A=980.0 m2 and separation d=6.20E-03 m is connected via a swith to a 8 Ω resistor and a battery of voltage V0=53 V as shown in the figure. The current starts to flow at time t=0 when the switch is closed. What is the magnitude of the electric field at time t=2.40E-05?
a) 5.154E+03 V/m
b) 5.669E+03 V/m
c) 6.236E+03 V/m
d) 6.860E+03 V/m
e) 7.545E+03 V/m

KEY:QB:Ch 16:V1

[edit | edit source]

QB153089888055

1)
A parallel plate capacitor with a capicatnce C=6.90E-06 F whose plates have an area A=5.80E+03 m2 and separation d=7.40E-03 m is connected via a swith to a 26 Ω resistor and a battery of voltage V0=9 V as shown in the figure. The current starts to flow at time t=0 when the switch is closed. What is the magnitude of the displacement current at time t=4.70E-04?
-a) 1.894E-02 A
-b) 2.083E-02 A
-c) 2.291E-02 A
+d) 2.520E-02 A
-e) 2.773E-02 A

2) What is the radiation pressure on an object that is 9.70E+11 m away from the sun and has cross-sectional area of 0.076 m2? The average power output of the Sun is 3.80E+26 W.

-a) 1.611E-07 N/m2
-b) 1.772E-07 N/m2
-c) 1.949E-07 N/m2
+d) 2.144E-07 N/m2
-e) 2.358E-07 N/m2
3)
A parallel plate capacitor with a capicatnce C=1.40E-06 F whose plates have an area A=980.0 m2 and separation d=6.20E-03 m is connected via a swith to a 8 Ω resistor and a battery of voltage V0=53 V as shown in the figure. The current starts to flow at time t=0 when the switch is closed. What is the magnitude of the electric field at time t=2.40E-05?
-a) 5.154E+03 V/m
-b) 5.669E+03 V/m
-c) 6.236E+03 V/m
-d) 6.860E+03 V/m
+e) 7.545E+03 V/m

QB:Ch 16:V2

[edit | edit source]

QB153089888055

1)
A parallel plate capacitor with a capicatnce C=7.90E-06 F whose plates have an area A=6.10E+03 m2 and separation d=6.80E-03 m is connected via a swith to a 22 Ω resistor and a battery of voltage V0=6 V as shown in the figure. The current starts to flow at time t=0 when the switch is closed. What is the magnitude of the electric field at time t=5.20E-04?
a) 7.619E+02 V/m
b) 8.381E+02 V/m
c) 9.219E+02 V/m
d) 1.014E+03 V/m
e) 1.115E+03 V/m

2) What is the radiation pressure on an object that is 8.90E+11 m away from the sun and has cross-sectional area of 0.013 m2? The average power output of the Sun is 3.80E+26 W.

a) 2.315E-07 N/m2
b) 2.547E-07 N/m2
c) 2.801E-07 N/m2
d) 3.082E-07 N/m2
e) 3.390E-07 N/m2
3)
A parallel plate capacitor with a capicatnce C=4.90E-06 F whose plates have an area A=3.00E+03 m2 and separation d=5.40E-03 m is connected via a swith to a 10 Ω resistor and a battery of voltage V0=12 V as shown in the figure. The current starts to flow at time t=0 when the switch is closed. What is the magnitude of the displacement current at time t=2.00E-04?
a) 1.841E-02 A
b) 2.026E-02 A
c) 2.228E-02 A
d) 2.451E-02 A
e) 2.696E-02 A

KEY:QB:Ch 16:V2

[edit | edit source]

QB153089888055

1)
A parallel plate capacitor with a capicatnce C=7.90E-06 F whose plates have an area A=6.10E+03 m2 and separation d=6.80E-03 m is connected via a swith to a 22 Ω resistor and a battery of voltage V0=6 V as shown in the figure. The current starts to flow at time t=0 when the switch is closed. What is the magnitude of the electric field at time t=5.20E-04?
-a) 7.619E+02 V/m
+b) 8.381E+02 V/m
-c) 9.219E+02 V/m
-d) 1.014E+03 V/m
-e) 1.115E+03 V/m

2) What is the radiation pressure on an object that is 8.90E+11 m away from the sun and has cross-sectional area of 0.013 m2? The average power output of the Sun is 3.80E+26 W.

-a) 2.315E-07 N/m2
+b) 2.547E-07 N/m2
-c) 2.801E-07 N/m2
-d) 3.082E-07 N/m2
-e) 3.390E-07 N/m2
3)
A parallel plate capacitor with a capicatnce C=4.90E-06 F whose plates have an area A=3.00E+03 m2 and separation d=5.40E-03 m is connected via a swith to a 10 Ω resistor and a battery of voltage V0=12 V as shown in the figure. The current starts to flow at time t=0 when the switch is closed. What is the magnitude of the displacement current at time t=2.00E-04?
-a) 1.841E-02 A
+b) 2.026E-02 A
-c) 2.228E-02 A
-d) 2.451E-02 A
-e) 2.696E-02 A