Quizbank/Electricity and Magnetism (calculus based)/QB153089888055
QB153089888055
QB:Ch 5:V0
[edit | edit source]QB153089888055
is an integral that calculates the z-component of the electric field at point P situated above the x-axis where a charged rod of length (a+b) is located. The distance between point P and the x-axis is z=1.5 m. Evaluate at x=1.1 m if a=0.62 m, b=1.3 m. The total charge on the rod is 7 nC.
- a) 6.311E+00 V/m2
- b) 6.943E+00 V/m2
- c) 7.637E+00 V/m2
- d) 8.401E+00 V/m2
- e) 9.241E+00 V/m2
- a) 1.473E-14 N
- b) 1.620E-14 N
- c) 1.782E-14 N
- d) 1.960E-14 N
- e) 2.156E-14 N
- a) 5.569E+01 degrees
- b) 6.125E+01 degrees
- c) 6.738E+01 degrees
- d) 7.412E+01 degrees
- e) 8.153E+01 degrees
KEY:QB:Ch 5:V0
[edit | edit source]QB153089888055
is an integral that calculates the z-component of the electric field at point P situated above the x-axis where a charged rod of length (a+b) is located. The distance between point P and the x-axis is z=1.5 m. Evaluate at x=1.1 m if a=0.62 m, b=1.3 m. The total charge on the rod is 7 nC.
- -a) 6.311E+00 V/m2
- -b) 6.943E+00 V/m2
- +c) 7.637E+00 V/m2
- -d) 8.401E+00 V/m2
- -e) 9.241E+00 V/m2
- -a) 1.473E-14 N
- -b) 1.620E-14 N
- -c) 1.782E-14 N
- -d) 1.960E-14 N
- +e) 2.156E-14 N
- -a) 5.569E+01 degrees
- -b) 6.125E+01 degrees
- +c) 6.738E+01 degrees
- -d) 7.412E+01 degrees
- -e) 8.153E+01 degrees
QB:Ch 5:V1
[edit | edit source]QB153089888055
- a) 3.391E-14 N
- b) 3.731E-14 N
- c) 4.104E-14 N
- d) 4.514E-14 N
- e) 4.965E-14 N
is an integral that calculates the z-component of the electric field at point P situated above the x-axis where a charged rod of length (a+b) is located. The distance between point P and the x-axis is z=1.8 m. Evaluate at x=0.5 m if a=0.67 m, b=2.4 m. The total charge on the rod is 9 nC.
- a) 5.465E+00 V/m2
- b) 6.012E+00 V/m2
- c) 6.613E+00 V/m2
- d) 7.274E+00 V/m2
- e) 8.002E+00 V/m2
- a) 3.629E+01 degrees
- b) 3.992E+01 degrees
- c) 4.391E+01 degrees
- d) 4.830E+01 degrees
- e) 5.313E+01 degrees
KEY:QB:Ch 5:V1
[edit | edit source]QB153089888055
- -a) 3.391E-14 N
- -b) 3.731E-14 N
- -c) 4.104E-14 N
- +d) 4.514E-14 N
- -e) 4.965E-14 N
is an integral that calculates the z-component of the electric field at point P situated above the x-axis where a charged rod of length (a+b) is located. The distance between point P and the x-axis is z=1.8 m. Evaluate at x=0.5 m if a=0.67 m, b=2.4 m. The total charge on the rod is 9 nC.
- -a) 5.465E+00 V/m2
- -b) 6.012E+00 V/m2
- -c) 6.613E+00 V/m2
- +d) 7.274E+00 V/m2
- -e) 8.002E+00 V/m2
- -a) 3.629E+01 degrees
- -b) 3.992E+01 degrees
- -c) 4.391E+01 degrees
- -d) 4.830E+01 degrees
- +e) 5.313E+01 degrees
QB:Ch 5:V2
[edit | edit source]QB153089888055
- a) 1.028E-14 N
- b) 1.130E-14 N
- c) 1.244E-14 N
- d) 1.368E-14 N
- e) 1.505E-14 N
is an integral that calculates the z-component of the electric field at point P situated above the x-axis where a charged rod of length (a+b) is located. The distance between point P and the x-axis is z=1.5 m. Evaluate at x=1.0 m if a=1.1 m, b=1.4 m. The total charge on the rod is 5 nC.
- a) 4.602E+00 V/m2
- b) 5.062E+00 V/m2
- c) 5.568E+00 V/m2
- d) 6.125E+00 V/m2
- e) 6.738E+00 V/m2
- a) 5.569E+01 degrees
- b) 6.125E+01 degrees
- c) 6.738E+01 degrees
- d) 7.412E+01 degrees
- e) 8.153E+01 degrees
KEY:QB:Ch 5:V2
[edit | edit source]QB153089888055
- -a) 1.028E-14 N
- -b) 1.130E-14 N
- -c) 1.244E-14 N
- -d) 1.368E-14 N
- +e) 1.505E-14 N
is an integral that calculates the z-component of the electric field at point P situated above the x-axis where a charged rod of length (a+b) is located. The distance between point P and the x-axis is z=1.5 m. Evaluate at x=1.0 m if a=1.1 m, b=1.4 m. The total charge on the rod is 5 nC.
- +a) 4.602E+00 V/m2
- -b) 5.062E+00 V/m2
- -c) 5.568E+00 V/m2
- -d) 6.125E+00 V/m2
- -e) 6.738E+00 V/m2
- -a) 5.569E+01 degrees
- -b) 6.125E+01 degrees
- +c) 6.738E+01 degrees
- -d) 7.412E+01 degrees
- -e) 8.153E+01 degrees
QB:Ch 6:V0
[edit | edit source]QB153089888055
1) Five concentric spherical shells have radius of exactly (1m, 2m, 3m, 4m, 5m).Each is uniformly charged with 9.0 nano-Coulombs. What is the magnitude of the electric field at a distance of 5.5 m from the center of the shells?
- a) 9.144E+00 N/C
- b) 1.006E+01 N/C
- c) 1.106E+01 N/C
- d) 1.217E+01 N/C
- e) 1.339E+01 N/C
2) A non-conducting sphere of radius R=1.4 m has a non-uniform charge density that varies with the distnce from its center as given by ρ(r)=ar1.6 (r≤R) where a=3 nC·m-1.4. What is the magnitude of the electric field at a distance of 1.3 m from the center?
- a) 1.457E+02 N/C
- b) 1.603E+02 N/C
- c) 1.763E+02 N/C
- d) 1.939E+02 N/C
- e) 2.133E+02 N/C
- a) 8.921E+01 N·m2/C
- b) 9.813E+01 N·m2/C
- c) 1.079E+02 N·m2/C
- d) 1.187E+02 N·m2/C
- e) 1.306E+02 N·m2/C
KEY:QB:Ch 6:V0
[edit | edit source]QB153089888055
1) Five concentric spherical shells have radius of exactly (1m, 2m, 3m, 4m, 5m).Each is uniformly charged with 9.0 nano-Coulombs. What is the magnitude of the electric field at a distance of 5.5 m from the center of the shells?
- -a) 9.144E+00 N/C
- -b) 1.006E+01 N/C
- -c) 1.106E+01 N/C
- -d) 1.217E+01 N/C
- +e) 1.339E+01 N/C
2) A non-conducting sphere of radius R=1.4 m has a non-uniform charge density that varies with the distnce from its center as given by ρ(r)=ar1.6 (r≤R) where a=3 nC·m-1.4. What is the magnitude of the electric field at a distance of 1.3 m from the center?
- +a) 1.457E+02 N/C
- -b) 1.603E+02 N/C
- -c) 1.763E+02 N/C
- -d) 1.939E+02 N/C
- -e) 2.133E+02 N/C
- +a) 8.921E+01 N·m2/C
- -b) 9.813E+01 N·m2/C
- -c) 1.079E+02 N·m2/C
- -d) 1.187E+02 N·m2/C
- -e) 1.306E+02 N·m2/C
QB:Ch 6:V1
[edit | edit source]QB153089888055
1) Five concentric spherical shells have radius of exactly (1m, 2m, 3m, 4m, 5m).Each is uniformly charged with 7.2 nano-Coulombs. What is the magnitude of the electric field at a distance of 4.6 m from the center of the shells?
- a) 1.114E+01 N/C
- b) 1.225E+01 N/C
- c) 1.347E+01 N/C
- d) 1.482E+01 N/C
- e) 1.630E+01 N/C
2) A non-conducting sphere of radius R=3.9 m has a non-uniform charge density that varies with the distnce from its center as given by ρ(r)=ar1.4 (r≤R) where a=2 nC·m-1.6. What is the magnitude of the electric field at a distance of 2.6 m from the center?
- a) 3.821E+02 N/C
- b) 4.203E+02 N/C
- c) 4.624E+02 N/C
- d) 5.086E+02 N/C
- e) 5.594E+02 N/C
- a) 1.737E+01 N·m2/C
- b) 1.910E+01 N·m2/C
- c) 2.101E+01 N·m2/C
- d) 2.311E+01 N·m2/C
- e) 2.543E+01 N·m2/C
KEY:QB:Ch 6:V1
[edit | edit source]QB153089888055
1) Five concentric spherical shells have radius of exactly (1m, 2m, 3m, 4m, 5m).Each is uniformly charged with 7.2 nano-Coulombs. What is the magnitude of the electric field at a distance of 4.6 m from the center of the shells?
- -a) 1.114E+01 N/C
- +b) 1.225E+01 N/C
- -c) 1.347E+01 N/C
- -d) 1.482E+01 N/C
- -e) 1.630E+01 N/C
2) A non-conducting sphere of radius R=3.9 m has a non-uniform charge density that varies with the distnce from its center as given by ρ(r)=ar1.4 (r≤R) where a=2 nC·m-1.6. What is the magnitude of the electric field at a distance of 2.6 m from the center?
- -a) 3.821E+02 N/C
- -b) 4.203E+02 N/C
- -c) 4.624E+02 N/C
- +d) 5.086E+02 N/C
- -e) 5.594E+02 N/C
- -a) 1.737E+01 N·m2/C
- -b) 1.910E+01 N·m2/C
- -c) 2.101E+01 N·m2/C
- -d) 2.311E+01 N·m2/C
- +e) 2.543E+01 N·m2/C
QB:Ch 6:V2
[edit | edit source]QB153089888055
1) A non-conducting sphere of radius R=3.7 m has a non-uniform charge density that varies with the distnce from its center as given by ρ(r)=ar1.4 (r≤R) where a=2 nC·m-1.6. What is the magnitude of the electric field at a distance of 3.1 m from the center?
- a) 6.411E+02 N/C
- b) 7.052E+02 N/C
- c) 7.757E+02 N/C
- d) 8.533E+02 N/C
- e) 9.386E+02 N/C
- a) 2.012E+01 N·m2/C
- b) 2.213E+01 N·m2/C
- c) 2.435E+01 N·m2/C
- d) 2.678E+01 N·m2/C
- e) 2.946E+01 N·m2/C
3) Five concentric spherical shells have radius of exactly (1m, 2m, 3m, 4m, 5m).Each is uniformly charged with 4.7 nano-Coulombs. What is the magnitude of the electric field at a distance of 4.2 m from the center of the shells?
- a) 9.592E+00 N/C
- b) 1.055E+01 N/C
- c) 1.161E+01 N/C
- d) 1.277E+01 N/C
- e) 1.404E+01 N/C
KEY:QB:Ch 6:V2
[edit | edit source]QB153089888055
1) A non-conducting sphere of radius R=3.7 m has a non-uniform charge density that varies with the distnce from its center as given by ρ(r)=ar1.4 (r≤R) where a=2 nC·m-1.6. What is the magnitude of the electric field at a distance of 3.1 m from the center?
- -a) 6.411E+02 N/C
- -b) 7.052E+02 N/C
- +c) 7.757E+02 N/C
- -d) 8.533E+02 N/C
- -e) 9.386E+02 N/C
- -a) 2.012E+01 N·m2/C
- -b) 2.213E+01 N·m2/C
- -c) 2.435E+01 N·m2/C
- -d) 2.678E+01 N·m2/C
- +e) 2.946E+01 N·m2/C
3) Five concentric spherical shells have radius of exactly (1m, 2m, 3m, 4m, 5m).Each is uniformly charged with 4.7 nano-Coulombs. What is the magnitude of the electric field at a distance of 4.2 m from the center of the shells?
- +a) 9.592E+00 N/C
- -b) 1.055E+01 N/C
- -c) 1.161E+01 N/C
- -d) 1.277E+01 N/C
- -e) 1.404E+01 N/C
QB:Ch 7:V0
[edit | edit source]QB153089888055
- a) 8.672E+02 V
- b) 9.539E+02 V
- c) 1.049E+03 V
- d) 1.154E+03 V
- e) 1.270E+03 V
2) If a 14 nC charge is situated at the origin, the equipotential surface for V(x,y,z)=26 V is x2 + y2 + z2 = R2, where R=
- a) 3.636E+00 m
- b) 4.000E+00 m
- c) 4.399E+00 m
- d) 4.839E+00 m
- e) 5.323E+00 m
3) Calculate the final speed of a free electron accelerated from rest through a potential difference of 69 V.
- a) 3.365E+06 m/s
- b) 3.701E+06 m/s
- c) 4.072E+06 m/s
- d) 4.479E+06 m/s
- e) 4.927E+06 m/s
KEY:QB:Ch 7:V0
[edit | edit source]QB153089888055
- +a) 8.672E+02 V
- -b) 9.539E+02 V
- -c) 1.049E+03 V
- -d) 1.154E+03 V
- -e) 1.270E+03 V
2) If a 14 nC charge is situated at the origin, the equipotential surface for V(x,y,z)=26 V is x2 + y2 + z2 = R2, where R=
- -a) 3.636E+00 m
- -b) 4.000E+00 m
- -c) 4.399E+00 m
- +d) 4.839E+00 m
- -e) 5.323E+00 m
3) Calculate the final speed of a free electron accelerated from rest through a potential difference of 69 V.
- -a) 3.365E+06 m/s
- -b) 3.701E+06 m/s
- -c) 4.072E+06 m/s
- -d) 4.479E+06 m/s
- +e) 4.927E+06 m/s
QB:Ch 7:V1
[edit | edit source]QB153089888055
1) If a 28 nC charge is situated at the origin, the equipotential surface for V(x,y,z)=77 V is x2 + y2 + z2 = R2, where R=
- a) 2.701E+00 m
- b) 2.971E+00 m
- c) 3.268E+00 m
- d) 3.595E+00 m
- e) 3.955E+00 m
2) Calculate the final speed of a free electron accelerated from rest through a potential difference of 83 V.
- a) 4.466E+06 m/s
- b) 4.912E+06 m/s
- c) 5.403E+06 m/s
- d) 5.944E+06 m/s
- e) 6.538E+06 m/s
- a) 3.814E+02 V
- b) 4.195E+02 V
- c) 4.615E+02 V
- d) 5.077E+02 V
- e) 5.584E+02 V
KEY:QB:Ch 7:V1
[edit | edit source]QB153089888055
1) If a 28 nC charge is situated at the origin, the equipotential surface for V(x,y,z)=77 V is x2 + y2 + z2 = R2, where R=
- -a) 2.701E+00 m
- -b) 2.971E+00 m
- +c) 3.268E+00 m
- -d) 3.595E+00 m
- -e) 3.955E+00 m
2) Calculate the final speed of a free electron accelerated from rest through a potential difference of 83 V.
- -a) 4.466E+06 m/s
- -b) 4.912E+06 m/s
- +c) 5.403E+06 m/s
- -d) 5.944E+06 m/s
- -e) 6.538E+06 m/s
- -a) 3.814E+02 V
- -b) 4.195E+02 V
- +c) 4.615E+02 V
- -d) 5.077E+02 V
- -e) 5.584E+02 V
QB:Ch 7:V2
[edit | edit source]QB153089888055
1) Calculate the final speed of a free electron accelerated from rest through a potential difference of 19 V.
- a) 1.942E+06 m/s
- b) 2.137E+06 m/s
- c) 2.350E+06 m/s
- d) 2.585E+06 m/s
- e) 2.844E+06 m/s
- a) 3.852E+02 V
- b) 4.238E+02 V
- c) 4.661E+02 V
- d) 5.127E+02 V
- e) 5.640E+02 V
3) If a 29 nC charge is situated at the origin, the equipotential surface for V(x,y,z)=81 V is x2 + y2 + z2 = R2, where R=
- a) 3.218E+00 m
- b) 3.540E+00 m
- c) 3.893E+00 m
- d) 4.283E+00 m
- e) 4.711E+00 m
KEY:QB:Ch 7:V2
[edit | edit source]QB153089888055
1) Calculate the final speed of a free electron accelerated from rest through a potential difference of 19 V.
- -a) 1.942E+06 m/s
- -b) 2.137E+06 m/s
- -c) 2.350E+06 m/s
- +d) 2.585E+06 m/s
- -e) 2.844E+06 m/s
- -a) 3.852E+02 V
- -b) 4.238E+02 V
- +c) 4.661E+02 V
- -d) 5.127E+02 V
- -e) 5.640E+02 V
3) If a 29 nC charge is situated at the origin, the equipotential surface for V(x,y,z)=81 V is x2 + y2 + z2 = R2, where R=
- +a) 3.218E+00 m
- -b) 3.540E+00 m
- -c) 3.893E+00 m
- -d) 4.283E+00 m
- -e) 4.711E+00 m
QB:Ch 8:V0
[edit | edit source]QB153089888055
- a) 3.700E+00 μF
- b) 4.070E+00 μF
- c) 4.477E+00 μF
- d) 4.925E+00 μF
- e) 5.417E+00 μF
- a) 1.764E+01 μJ
- b) 1.940E+01 μJ
- c) 2.134E+01 μJ
- d) 2.348E+01 μJ
- e) 2.583E+01 μJ
- a) 5.066E+01 μC
- b) 5.573E+01 μC
- c) 6.130E+01 μC
- d) 6.743E+01 μC
- e) 7.417E+01 μC
KEY:QB:Ch 8:V0
[edit | edit source]QB153089888055
- -a) 3.700E+00 μF
- -b) 4.070E+00 μF
- -c) 4.477E+00 μF
- -d) 4.925E+00 μF
- +e) 5.417E+00 μF
- -a) 1.764E+01 μJ
- +b) 1.940E+01 μJ
- -c) 2.134E+01 μJ
- -d) 2.348E+01 μJ
- -e) 2.583E+01 μJ
- -a) 5.066E+01 μC
- -b) 5.573E+01 μC
- -c) 6.130E+01 μC
- +d) 6.743E+01 μC
- -e) 7.417E+01 μC
QB:Ch 8:V1
[edit | edit source]QB153089888055
- a) 4.220E+00 μF
- b) 4.642E+00 μF
- c) 5.106E+00 μF
- d) 5.616E+00 μF
- e) 6.178E+00 μF
- a) 3.982E+01 μC
- b) 4.380E+01 μC
- c) 4.818E+01 μC
- d) 5.300E+01 μC
- e) 5.829E+01 μC
- a) 1.199E+01 μJ
- b) 1.319E+01 μJ
- c) 1.450E+01 μJ
- d) 1.595E+01 μJ
- e) 1.755E+01 μJ
KEY:QB:Ch 8:V1
[edit | edit source]QB153089888055
- +a) 4.220E+00 μF
- -b) 4.642E+00 μF
- -c) 5.106E+00 μF
- -d) 5.616E+00 μF
- -e) 6.178E+00 μF
- +a) 3.982E+01 μC
- -b) 4.380E+01 μC
- -c) 4.818E+01 μC
- -d) 5.300E+01 μC
- -e) 5.829E+01 μC
- +a) 1.199E+01 μJ
- -b) 1.319E+01 μJ
- -c) 1.450E+01 μJ
- -d) 1.595E+01 μJ
- -e) 1.755E+01 μJ
QB:Ch 8:V2
[edit | edit source]QB153089888055
- a) 2.602E+01 μC
- b) 2.862E+01 μC
- c) 3.148E+01 μC
- d) 3.463E+01 μC
- e) 3.809E+01 μC
- a) 4.173E+00 μF
- b) 4.590E+00 μF
- c) 5.049E+00 μF
- d) 5.554E+00 μF
- e) 6.110E+00 μF
- a) 8.718E+00 μJ
- b) 9.589E+00 μJ
- c) 1.055E+01 μJ
- d) 1.160E+01 μJ
- e) 1.276E+01 μJ
KEY:QB:Ch 8:V2
[edit | edit source]QB153089888055
- -a) 2.602E+01 μC
- -b) 2.862E+01 μC
- +c) 3.148E+01 μC
- -d) 3.463E+01 μC
- -e) 3.809E+01 μC
- -a) 4.173E+00 μF
- -b) 4.590E+00 μF
- -c) 5.049E+00 μF
- +d) 5.554E+00 μF
- -e) 6.110E+00 μF
- -a) 8.718E+00 μJ
- -b) 9.589E+00 μJ
- -c) 1.055E+01 μJ
- -d) 1.160E+01 μJ
- +e) 1.276E+01 μJ
QB:Ch 9:V0
[edit | edit source]QB153089888055
1) Calculate the resistance of a 12-gauge copper wire that is 30 m long and carries a current of 31 mA. The resistivity of copper is 1.680E-08 Ω·m and 12-gauge wire as a cross-sectional area of 3.31 mm2.
- a) 1.384E-01 Ω
- b) 1.523E-01 Ω
- c) 1.675E-01 Ω
- d) 1.842E-01 Ω
- e) 2.027E-01 Ω
2) What is the average current involved when a truck battery sets in motion 618 C of charge in 2.28 s while starting an engine?
- a) 2.240E+02 A
- b) 2.464E+02 A
- c) 2.711E+02 A
- d) 2.982E+02 A
- e) 3.280E+02 A
3) A DC winch moter draws 17 amps at 187 volts as it lifts a 5.600E+03 N weight at a constant speed of 0.381 m/s. Assuming that all the electrical power is either converted into gravitational potential energy or ohmically heats the motor's coils, calculate the coil's resistance.
- a) 2.471E+00 Ω
- b) 2.718E+00 Ω
- c) 2.990E+00 Ω
- d) 3.288E+00 Ω
- e) 3.617E+00 Ω
KEY:QB:Ch 9:V0
[edit | edit source]QB153089888055
1) Calculate the resistance of a 12-gauge copper wire that is 30 m long and carries a current of 31 mA. The resistivity of copper is 1.680E-08 Ω·m and 12-gauge wire as a cross-sectional area of 3.31 mm2.
- -a) 1.384E-01 Ω
- +b) 1.523E-01 Ω
- -c) 1.675E-01 Ω
- -d) 1.842E-01 Ω
- -e) 2.027E-01 Ω
2) What is the average current involved when a truck battery sets in motion 618 C of charge in 2.28 s while starting an engine?
- -a) 2.240E+02 A
- -b) 2.464E+02 A
- +c) 2.711E+02 A
- -d) 2.982E+02 A
- -e) 3.280E+02 A
3) A DC winch moter draws 17 amps at 187 volts as it lifts a 5.600E+03 N weight at a constant speed of 0.381 m/s. Assuming that all the electrical power is either converted into gravitational potential energy or ohmically heats the motor's coils, calculate the coil's resistance.
- -a) 2.471E+00 Ω
- -b) 2.718E+00 Ω
- -c) 2.990E+00 Ω
- -d) 3.288E+00 Ω
- +e) 3.617E+00 Ω
QB:Ch 9:V1
[edit | edit source]QB153089888055
1) What is the average current involved when a truck battery sets in motion 701 C of charge in 4.98 s while starting an engine?
- a) 1.280E+02 A
- b) 1.408E+02 A
- c) 1.548E+02 A
- d) 1.703E+02 A
- e) 1.874E+02 A
2) Calculate the resistance of a 12-gauge copper wire that is 30 m long and carries a current of 31 mA. The resistivity of copper is 1.680E-08 Ω·m and 12-gauge wire as a cross-sectional area of 3.31 mm2.
- a) 1.384E-01 Ω
- b) 1.523E-01 Ω
- c) 1.675E-01 Ω
- d) 1.842E-01 Ω
- e) 2.027E-01 Ω
3) A DC winch moter draws 26 amps at 177 volts as it lifts a 4.820E+03 N weight at a constant speed of 0.696 m/s. Assuming that all the electrical power is either converted into gravitational potential energy or ohmically heats the motor's coils, calculate the coil's resistance.
- a) 1.677E+00 Ω
- b) 1.845E+00 Ω
- c) 2.030E+00 Ω
- d) 2.233E+00 Ω
- e) 2.456E+00 Ω
KEY:QB:Ch 9:V1
[edit | edit source]QB153089888055
1) What is the average current involved when a truck battery sets in motion 701 C of charge in 4.98 s while starting an engine?
- -a) 1.280E+02 A
- +b) 1.408E+02 A
- -c) 1.548E+02 A
- -d) 1.703E+02 A
- -e) 1.874E+02 A
2) Calculate the resistance of a 12-gauge copper wire that is 30 m long and carries a current of 31 mA. The resistivity of copper is 1.680E-08 Ω·m and 12-gauge wire as a cross-sectional area of 3.31 mm2.
- -a) 1.384E-01 Ω
- +b) 1.523E-01 Ω
- -c) 1.675E-01 Ω
- -d) 1.842E-01 Ω
- -e) 2.027E-01 Ω
3) A DC winch moter draws 26 amps at 177 volts as it lifts a 4.820E+03 N weight at a constant speed of 0.696 m/s. Assuming that all the electrical power is either converted into gravitational potential energy or ohmically heats the motor's coils, calculate the coil's resistance.
- -a) 1.677E+00 Ω
- +b) 1.845E+00 Ω
- -c) 2.030E+00 Ω
- -d) 2.233E+00 Ω
- -e) 2.456E+00 Ω
QB:Ch 9:V2
[edit | edit source]QB153089888055
1) What is the average current involved when a truck battery sets in motion 775 C of charge in 2.9 s while starting an engine?
- a) 2.209E+02 A
- b) 2.429E+02 A
- c) 2.672E+02 A
- d) 2.940E+02 A
- e) 3.234E+02 A
2) Calculate the resistance of a 12-gauge copper wire that is 19 m long and carries a current of 59 mA. The resistivity of copper is 1.680E-08 Ω·m and 12-gauge wire as a cross-sectional area of 3.31 mm2.
- a) 7.970E-02 Ω
- b) 8.767E-02 Ω
- c) 9.644E-02 Ω
- d) 1.061E-01 Ω
- e) 1.167E-01 Ω
3) A DC winch moter draws 27 amps at 190 volts as it lifts a 4.910E+03 N weight at a constant speed of 0.769 m/s. Assuming that all the electrical power is either converted into gravitational potential energy or ohmically heats the motor's coils, calculate the coil's resistance.
- a) 1.396E+00 Ω
- b) 1.535E+00 Ω
- c) 1.689E+00 Ω
- d) 1.858E+00 Ω
- e) 2.043E+00 Ω
KEY:QB:Ch 9:V2
[edit | edit source]QB153089888055
1) What is the average current involved when a truck battery sets in motion 775 C of charge in 2.9 s while starting an engine?
- -a) 2.209E+02 A
- -b) 2.429E+02 A
- +c) 2.672E+02 A
- -d) 2.940E+02 A
- -e) 3.234E+02 A
2) Calculate the resistance of a 12-gauge copper wire that is 19 m long and carries a current of 59 mA. The resistivity of copper is 1.680E-08 Ω·m and 12-gauge wire as a cross-sectional area of 3.31 mm2.
- -a) 7.970E-02 Ω
- -b) 8.767E-02 Ω
- +c) 9.644E-02 Ω
- -d) 1.061E-01 Ω
- -e) 1.167E-01 Ω
3) A DC winch moter draws 27 amps at 190 volts as it lifts a 4.910E+03 N weight at a constant speed of 0.769 m/s. Assuming that all the electrical power is either converted into gravitational potential energy or ohmically heats the motor's coils, calculate the coil's resistance.
- -a) 1.396E+00 Ω
- -b) 1.535E+00 Ω
- -c) 1.689E+00 Ω
- +d) 1.858E+00 Ω
- -e) 2.043E+00 Ω
QB:Ch 10:V0
[edit | edit source]QB153089888055
1) Three resistors, R1 = 1.39 Ω, and R2 = R2 = 3.06 Ω, are connected in parallel to a 6.21 V voltage source. Calculate the power dissipated by the smaller resistor (R1.)
- a) 2.293E+01 W
- b) 2.522E+01 W
- c) 2.774E+01 W
- d) 3.052E+01 W
- e) 3.357E+01 W
- a) 2.177E+01 s
- b) 2.394E+01 s
- c) 2.634E+01 s
- d) 2.897E+01 s
- e) 3.187E+01 s
- a) 1.446E+01 W
- b) 1.591E+01 W
- c) 1.750E+01 W
- d) 1.925E+01 W
- e) 2.117E+01 W
KEY:QB:Ch 10:V0
[edit | edit source]QB153089888055
1) Three resistors, R1 = 1.39 Ω, and R2 = R2 = 3.06 Ω, are connected in parallel to a 6.21 V voltage source. Calculate the power dissipated by the smaller resistor (R1.)
- -a) 2.293E+01 W
- -b) 2.522E+01 W
- +c) 2.774E+01 W
- -d) 3.052E+01 W
- -e) 3.357E+01 W
- -a) 2.177E+01 s
- +b) 2.394E+01 s
- -c) 2.634E+01 s
- -d) 2.897E+01 s
- -e) 3.187E+01 s
- -a) 1.446E+01 W
- -b) 1.591E+01 W
- -c) 1.750E+01 W
- -d) 1.925E+01 W
- +e) 2.117E+01 W
QB:Ch 10:V1
[edit | edit source]QB153089888055
- a) 9.718E+00 s
- b) 1.069E+01 s
- c) 1.176E+01 s
- d) 1.293E+01 s
- e) 1.423E+01 s
2) Three resistors, R1 = 1.43 Ω, and R2 = R2 = 3.25 Ω, are connected in parallel to a 9.03 V voltage source. Calculate the power dissipated by the smaller resistor (R1.)
- a) 5.184E+01 W
- b) 5.702E+01 W
- c) 6.272E+01 W
- d) 6.900E+01 W
- e) 7.590E+01 W
- a) 2.240E+01 W
- b) 2.464E+01 W
- c) 2.710E+01 W
- d) 2.981E+01 W
- e) 3.279E+01 W
KEY:QB:Ch 10:V1
[edit | edit source]QB153089888055
- -a) 9.718E+00 s
- -b) 1.069E+01 s
- +c) 1.176E+01 s
- -d) 1.293E+01 s
- -e) 1.423E+01 s
2) Three resistors, R1 = 1.43 Ω, and R2 = R2 = 3.25 Ω, are connected in parallel to a 9.03 V voltage source. Calculate the power dissipated by the smaller resistor (R1.)
- -a) 5.184E+01 W
- +b) 5.702E+01 W
- -c) 6.272E+01 W
- -d) 6.900E+01 W
- -e) 7.590E+01 W
- +a) 2.240E+01 W
- -b) 2.464E+01 W
- -c) 2.710E+01 W
- -d) 2.981E+01 W
- -e) 3.279E+01 W
QB:Ch 10:V2
[edit | edit source]QB153089888055
- a) 7.123E+00 W
- b) 7.835E+00 W
- c) 8.618E+00 W
- d) 9.480E+00 W
- e) 1.043E+01 W
- a) 3.728E+00 s
- b) 4.101E+00 s
- c) 4.511E+00 s
- d) 4.962E+00 s
- e) 5.458E+00 s
3) Three resistors, R1 = 0.87 Ω, and R2 = R2 = 2.0 Ω, are connected in parallel to a 8.57 V voltage source. Calculate the power dissipated by the smaller resistor (R1.)
- a) 6.977E+01 W
- b) 7.674E+01 W
- c) 8.442E+01 W
- d) 9.286E+01 W
- e) 1.021E+02 W
KEY:QB:Ch 10:V2
[edit | edit source]QB153089888055
- -a) 7.123E+00 W
- -b) 7.835E+00 W
- -c) 8.618E+00 W
- -d) 9.480E+00 W
- +e) 1.043E+01 W
- -a) 3.728E+00 s
- -b) 4.101E+00 s
- -c) 4.511E+00 s
- +d) 4.962E+00 s
- -e) 5.458E+00 s
3) Three resistors, R1 = 0.87 Ω, and R2 = R2 = 2.0 Ω, are connected in parallel to a 8.57 V voltage source. Calculate the power dissipated by the smaller resistor (R1.)
- -a) 6.977E+01 W
- -b) 7.674E+01 W
- +c) 8.442E+01 W
- -d) 9.286E+01 W
- -e) 1.021E+02 W
QB:Ch 11:V0
[edit | edit source]QB153089888055
1) A charged particle in a magnetic field of 3.820E-04 T is moving perpendicular to the magnetic field with a speed of 3.890E+05 m/s. What is the period of orbit if orbital radius is 0.718 m?
- a) 8.713E-06 s
- b) 9.584E-06 s
- c) 1.054E-05 s
- d) 1.160E-05 s
- e) 1.276E-05 s
2) An alpha-particle (m=6.64x10−27kg, q=3.2x10−19C) briefly enters a uniform magnetic field of magnitude 0.0582 T . It emerges after being deflected by 77° from its original direction. How much time did it spend in that magnetic field?
- a) 4.791E-07 s
- b) 5.271E-07 s
- c) 5.798E-07 s
- d) 6.377E-07 s
- e) 7.015E-07 s
3) An electron beam (m=9.1 x 10−31kg, q=1.6 x 10−19C) enters a crossed-field velocity selector with magnetic and electric fields of 3.34 mT and 7.430E+03 N/C, respectively. What must the velocity of the electron beam be to transverse the crossed fields undeflected ?
- a) 1.671E+06 m/s
- b) 1.838E+06 m/s
- c) 2.022E+06 m/s
- d) 2.225E+06 m/s
- e) 2.447E+06 m/s
KEY:QB:Ch 11:V0
[edit | edit source]QB153089888055
1) A charged particle in a magnetic field of 3.820E-04 T is moving perpendicular to the magnetic field with a speed of 3.890E+05 m/s. What is the period of orbit if orbital radius is 0.718 m?
- -a) 8.713E-06 s
- -b) 9.584E-06 s
- -c) 1.054E-05 s
- +d) 1.160E-05 s
- -e) 1.276E-05 s
2) An alpha-particle (m=6.64x10−27kg, q=3.2x10−19C) briefly enters a uniform magnetic field of magnitude 0.0582 T . It emerges after being deflected by 77° from its original direction. How much time did it spend in that magnetic field?
- +a) 4.791E-07 s
- -b) 5.271E-07 s
- -c) 5.798E-07 s
- -d) 6.377E-07 s
- -e) 7.015E-07 s
3) An electron beam (m=9.1 x 10−31kg, q=1.6 x 10−19C) enters a crossed-field velocity selector with magnetic and electric fields of 3.34 mT and 7.430E+03 N/C, respectively. What must the velocity of the electron beam be to transverse the crossed fields undeflected ?
- -a) 1.671E+06 m/s
- -b) 1.838E+06 m/s
- -c) 2.022E+06 m/s
- +d) 2.225E+06 m/s
- -e) 2.447E+06 m/s
QB:Ch 11:V1
[edit | edit source]QB153089888055
1) An electron beam (m=9.1 x 10−31kg, q=1.6 x 10−19C) enters a crossed-field velocity selector with magnetic and electric fields of 6.97 mT and 2.240E+03 N/C, respectively. What must the velocity of the electron beam be to transverse the crossed fields undeflected ?
- a) 2.656E+05 m/s
- b) 2.922E+05 m/s
- c) 3.214E+05 m/s
- d) 3.535E+05 m/s
- e) 3.889E+05 m/s
2) An alpha-particle (m=6.64x10−27kg, q=3.2x10−19C) briefly enters a uniform magnetic field of magnitude 0.0883 T . It emerges after being deflected by 74° from its original direction. How much time did it spend in that magnetic field?
- a) 2.280E-07 s
- b) 2.508E-07 s
- c) 2.759E-07 s
- d) 3.035E-07 s
- e) 3.339E-07 s
3) A charged particle in a magnetic field of 4.090E-04 T is moving perpendicular to the magnetic field with a speed of 5.980E+05 m/s. What is the period of orbit if orbital radius is 0.633 m?
- a) 4.543E-06 s
- b) 4.997E-06 s
- c) 5.497E-06 s
- d) 6.046E-06 s
- e) 6.651E-06 s
KEY:QB:Ch 11:V1
[edit | edit source]QB153089888055
1) An electron beam (m=9.1 x 10−31kg, q=1.6 x 10−19C) enters a crossed-field velocity selector with magnetic and electric fields of 6.97 mT and 2.240E+03 N/C, respectively. What must the velocity of the electron beam be to transverse the crossed fields undeflected ?
- -a) 2.656E+05 m/s
- -b) 2.922E+05 m/s
- +c) 3.214E+05 m/s
- -d) 3.535E+05 m/s
- -e) 3.889E+05 m/s
2) An alpha-particle (m=6.64x10−27kg, q=3.2x10−19C) briefly enters a uniform magnetic field of magnitude 0.0883 T . It emerges after being deflected by 74° from its original direction. How much time did it spend in that magnetic field?
- -a) 2.280E-07 s
- -b) 2.508E-07 s
- -c) 2.759E-07 s
- +d) 3.035E-07 s
- -e) 3.339E-07 s
3) A charged particle in a magnetic field of 4.090E-04 T is moving perpendicular to the magnetic field with a speed of 5.980E+05 m/s. What is the period of orbit if orbital radius is 0.633 m?
- -a) 4.543E-06 s
- -b) 4.997E-06 s
- -c) 5.497E-06 s
- -d) 6.046E-06 s
- +e) 6.651E-06 s
QB:Ch 11:V2
[edit | edit source]QB153089888055
1) A charged particle in a magnetic field of 4.130E-04 T is moving perpendicular to the magnetic field with a speed of 4.710E+05 m/s. What is the period of orbit if orbital radius is 0.458 m?
- a) 6.110E-06 s
- b) 6.721E-06 s
- c) 7.393E-06 s
- d) 8.132E-06 s
- e) 8.945E-06 s
2) An electron beam (m=9.1 x 10−31kg, q=1.6 x 10−19C) enters a crossed-field velocity selector with magnetic and electric fields of 2.62 mT and 2.120E+03 N/C, respectively. What must the velocity of the electron beam be to transverse the crossed fields undeflected ?
- a) 8.092E+05 m/s
- b) 8.901E+05 m/s
- c) 9.791E+05 m/s
- d) 1.077E+06 m/s
- e) 1.185E+06 m/s
3) An alpha-particle (m=6.64x10−27kg, q=3.2x10−19C) briefly enters a uniform magnetic field of magnitude 0.0482 T . It emerges after being deflected by 82° from its original direction. How much time did it spend in that magnetic field?
- a) 4.629E-07 s
- b) 5.092E-07 s
- c) 5.601E-07 s
- d) 6.161E-07 s
- e) 6.777E-07 s
KEY:QB:Ch 11:V2
[edit | edit source]QB153089888055
1) A charged particle in a magnetic field of 4.130E-04 T is moving perpendicular to the magnetic field with a speed of 4.710E+05 m/s. What is the period of orbit if orbital radius is 0.458 m?
- +a) 6.110E-06 s
- -b) 6.721E-06 s
- -c) 7.393E-06 s
- -d) 8.132E-06 s
- -e) 8.945E-06 s
2) An electron beam (m=9.1 x 10−31kg, q=1.6 x 10−19C) enters a crossed-field velocity selector with magnetic and electric fields of 2.62 mT and 2.120E+03 N/C, respectively. What must the velocity of the electron beam be to transverse the crossed fields undeflected ?
- +a) 8.092E+05 m/s
- -b) 8.901E+05 m/s
- -c) 9.791E+05 m/s
- -d) 1.077E+06 m/s
- -e) 1.185E+06 m/s
3) An alpha-particle (m=6.64x10−27kg, q=3.2x10−19C) briefly enters a uniform magnetic field of magnitude 0.0482 T . It emerges after being deflected by 82° from its original direction. How much time did it spend in that magnetic field?
- -a) 4.629E-07 s
- -b) 5.092E-07 s
- -c) 5.601E-07 s
- +d) 6.161E-07 s
- -e) 6.777E-07 s
QB:Ch 12:V0
[edit | edit source]QB153089888055
1) A long coil is tightly wound around a (hypothetical) ferromagnetic cylinder. If n= 16 turns per centimeter and the current applied to the solenoid is 424 mA, the net magnetic field is measured to be 1.24 T. What is the magnetic susceptibility for this case?
- a) 1.092E+03
- b) 1.201E+03
- c) 1.321E+03
- d) 1.454E+03
- e) 1.599E+03
:
- a) 1.622E-03 T-m
- b) 1.784E-03 T-m
- c) 1.963E-03 T-m
- d) 2.159E-03 T-m
- e) 2.375E-03 T-m
3) Two loops of wire carry the same current of 21 kA, and flow in the same direction. They share a common axis and orientation. One loop has a radius of 0.753 m while the other has a radius of 1.47 m. What is the magnitude of the magnetic field at a point on the axis of both loops, situated between the loops at a distance 0.406 m from the first (smaller) loopif the disance between the loops is 1.38 m?
- a) 1.559E-02 T
- b) 1.715E-02 T
- c) 1.886E-02 T
- d) 2.075E-02 T
- e) 2.283E-02 T
KEY:QB:Ch 12:V0
[edit | edit source]QB153089888055
1) A long coil is tightly wound around a (hypothetical) ferromagnetic cylinder. If n= 16 turns per centimeter and the current applied to the solenoid is 424 mA, the net magnetic field is measured to be 1.24 T. What is the magnetic susceptibility for this case?
- -a) 1.092E+03
- -b) 1.201E+03
- -c) 1.321E+03
- +d) 1.454E+03
- -e) 1.599E+03
:
- -a) 1.622E-03 T-m
- +b) 1.784E-03 T-m
- -c) 1.963E-03 T-m
- -d) 2.159E-03 T-m
- -e) 2.375E-03 T-m
3) Two loops of wire carry the same current of 21 kA, and flow in the same direction. They share a common axis and orientation. One loop has a radius of 0.753 m while the other has a radius of 1.47 m. What is the magnitude of the magnetic field at a point on the axis of both loops, situated between the loops at a distance 0.406 m from the first (smaller) loopif the disance between the loops is 1.38 m?
- -a) 1.559E-02 T
- +b) 1.715E-02 T
- -c) 1.886E-02 T
- -d) 2.075E-02 T
- -e) 2.283E-02 T
QB:Ch 12:V1
[edit | edit source]QB153089888055
1) Two loops of wire carry the same current of 29 kA, and flow in the same direction. They share a common axis and orientation. One loop has a radius of 0.76 m while the other has a radius of 1.12 m. What is the magnitude of the magnetic field at a point on the axis of both loops, situated between the loops at a distance 0.544 m from the first (smaller) loopif the disance between the loops is 1.56 m?
- a) 1.950E-02 T
- b) 2.145E-02 T
- c) 2.360E-02 T
- d) 2.596E-02 T
- e) 2.855E-02 T
2) A long coil is tightly wound around a (hypothetical) ferromagnetic cylinder. If n= 16 turns per centimeter and the current applied to the solenoid is 424 mA, the net magnetic field is measured to be 1.24 T. What is the magnetic susceptibility for this case?
- a) 1.092E+03
- b) 1.201E+03
- c) 1.321E+03
- d) 1.454E+03
- e) 1.599E+03
:
- a) 1.547E-03 T-m
- b) 1.702E-03 T-m
- c) 1.872E-03 T-m
- d) 2.060E-03 T-m
- e) 2.266E-03 T-m
KEY:QB:Ch 12:V1
[edit | edit source]QB153089888055
1) Two loops of wire carry the same current of 29 kA, and flow in the same direction. They share a common axis and orientation. One loop has a radius of 0.76 m while the other has a radius of 1.12 m. What is the magnitude of the magnetic field at a point on the axis of both loops, situated between the loops at a distance 0.544 m from the first (smaller) loopif the disance between the loops is 1.56 m?
- +a) 1.950E-02 T
- -b) 2.145E-02 T
- -c) 2.360E-02 T
- -d) 2.596E-02 T
- -e) 2.855E-02 T
2) A long coil is tightly wound around a (hypothetical) ferromagnetic cylinder. If n= 16 turns per centimeter and the current applied to the solenoid is 424 mA, the net magnetic field is measured to be 1.24 T. What is the magnetic susceptibility for this case?
- -a) 1.092E+03
- -b) 1.201E+03
- -c) 1.321E+03
- +d) 1.454E+03
- -e) 1.599E+03
:
- -a) 1.547E-03 T-m
- -b) 1.702E-03 T-m
- +c) 1.872E-03 T-m
- -d) 2.060E-03 T-m
- -e) 2.266E-03 T-m
QB:Ch 12:V2
[edit | edit source]QB153089888055
1) A long coil is tightly wound around a (hypothetical) ferromagnetic cylinder. If n= 27 turns per centimeter and the current applied to the solenoid is 344 mA, the net magnetic field is measured to be 1.12 T. What is the magnetic susceptibility for this case?
- a) 7.922E+02
- b) 8.714E+02
- c) 9.586E+02
- d) 1.054E+03
- e) 1.160E+03
:
- a) 1.017E-03 T-m
- b) 1.118E-03 T-m
- c) 1.230E-03 T-m
- d) 1.353E-03 T-m
- e) 1.489E-03 T-m
3) Two loops of wire carry the same current of 67 kA, and flow in the same direction. They share a common axis and orientation. One loop has a radius of 0.847 m while the other has a radius of 1.15 m. What is the magnitude of the magnetic field at a point on the axis of both loops, situated between the loops at a distance 0.408 m from the first (smaller) loopif the disance between the loops is 1.15 m?
- a) 4.799E-02 T
- b) 5.278E-02 T
- c) 5.806E-02 T
- d) 6.387E-02 T
- e) 7.026E-02 T
KEY:QB:Ch 12:V2
[edit | edit source]QB153089888055
1) A long coil is tightly wound around a (hypothetical) ferromagnetic cylinder. If n= 27 turns per centimeter and the current applied to the solenoid is 344 mA, the net magnetic field is measured to be 1.12 T. What is the magnetic susceptibility for this case?
- -a) 7.922E+02
- -b) 8.714E+02
- +c) 9.586E+02
- -d) 1.054E+03
- -e) 1.160E+03
:
- -a) 1.017E-03 T-m
- +b) 1.118E-03 T-m
- -c) 1.230E-03 T-m
- -d) 1.353E-03 T-m
- -e) 1.489E-03 T-m
3) Two loops of wire carry the same current of 67 kA, and flow in the same direction. They share a common axis and orientation. One loop has a radius of 0.847 m while the other has a radius of 1.15 m. What is the magnitude of the magnetic field at a point on the axis of both loops, situated between the loops at a distance 0.408 m from the first (smaller) loopif the disance between the loops is 1.15 m?
- -a) 4.799E-02 T
- -b) 5.278E-02 T
- +c) 5.806E-02 T
- -d) 6.387E-02 T
- -e) 7.026E-02 T
QB:Ch 13:V0
[edit | edit source]QB153089888055
1) The current through the windings of a solenoid with n= 2.260E+03 turns per meter is changing at a rate dI/dt=12 A/s. The solenoid is 62 cm long and has a cross-sectional diameter of 3.37 cm. A small coil consisting of N=23turns wraped in a circle of diameter 1.7 cm is placed in the middle of the solenoid such that the plane of the coil is perpendicular to the central axis of the solenoid. Assume that the infinite-solenoid approximation is valid inside the small coil. What is the emf induced in the coil?
- a) 1.215E-04 V
- b) 1.337E-04 V
- c) 1.470E-04 V
- d) 1.617E-04 V
- e) 1.779E-04 V
--(Answer & Why this question is different.)
- a) 6.534E+01 cm3/s
- b) 7.188E+01 cm3/s
- c) 7.907E+01 cm3/s
- d) 8.697E+01 cm3/s
- e) 9.567E+01 cm3/s
3) A long solenoid has a radius of 0.857 m and 58 turns per meter; its current decreases with time according to , where 1 A and 21 s−1.What is the induced electric fied at a distance 0.144 m from the axis at time t=0.0898 s ?
- a) 1.256E-05 V/m
- b) 1.382E-05 V/m
- c) 1.520E-05 V/m
- d) 1.672E-05 V/m
- e) 1.839E-05 V/m
KEY:QB:Ch 13:V0
[edit | edit source]QB153089888055
1) The current through the windings of a solenoid with n= 2.260E+03 turns per meter is changing at a rate dI/dt=12 A/s. The solenoid is 62 cm long and has a cross-sectional diameter of 3.37 cm. A small coil consisting of N=23turns wraped in a circle of diameter 1.7 cm is placed in the middle of the solenoid such that the plane of the coil is perpendicular to the central axis of the solenoid. Assume that the infinite-solenoid approximation is valid inside the small coil. What is the emf induced in the coil?
- -a) 1.215E-04 V
- -b) 1.337E-04 V
- -c) 1.470E-04 V
- -d) 1.617E-04 V
- +e) 1.779E-04 V
--(Answer & Why this question is different.)
- -a) 6.534E+01 cm3/s
- -b) 7.188E+01 cm3/s
- +c) 7.907E+01 cm3/s
- -d) 8.697E+01 cm3/s
- -e) 9.567E+01 cm3/s
3) A long solenoid has a radius of 0.857 m and 58 turns per meter; its current decreases with time according to , where 1 A and 21 s−1.What is the induced electric fied at a distance 0.144 m from the axis at time t=0.0898 s ?
- -a) 1.256E-05 V/m
- -b) 1.382E-05 V/m
- -c) 1.520E-05 V/m
- +d) 1.672E-05 V/m
- -e) 1.839E-05 V/m
QB:Ch 13:V1
[edit | edit source]QB153089888055
1) A long solenoid has a radius of 0.596 m and 19 turns per meter; its current decreases with time according to , where 5 A and 29 s−1.What is the induced electric fied at a distance 0.209 m from the axis at time t=0.0604 s ?
- a) 6.277E-05 V/m
- b) 6.904E-05 V/m
- c) 7.595E-05 V/m
- d) 8.354E-05 V/m
- e) 9.190E-05 V/m
--(Answer & Why this question is different.)
- a) 5.308E+01 cm3/s
- b) 5.839E+01 cm3/s
- c) 6.422E+01 cm3/s
- d) 7.065E+01 cm3/s
- e) 7.771E+01 cm3/s
3) The current through the windings of a solenoid with n= 2.040E+03 turns per meter is changing at a rate dI/dt=19 A/s. The solenoid is 76 cm long and has a cross-sectional diameter of 3.23 cm. A small coil consisting of N=25turns wraped in a circle of diameter 1.67 cm is placed in the middle of the solenoid such that the plane of the coil is perpendicular to the central axis of the solenoid. Assume that the infinite-solenoid approximation is valid inside the small coil. What is the emf induced in the coil?
- a) 2.204E-04 V
- b) 2.425E-04 V
- c) 2.667E-04 V
- d) 2.934E-04 V
- e) 3.227E-04 V
KEY:QB:Ch 13:V1
[edit | edit source]QB153089888055
1) A long solenoid has a radius of 0.596 m and 19 turns per meter; its current decreases with time according to , where 5 A and 29 s−1.What is the induced electric fied at a distance 0.209 m from the axis at time t=0.0604 s ?
- +a) 6.277E-05 V/m
- -b) 6.904E-05 V/m
- -c) 7.595E-05 V/m
- -d) 8.354E-05 V/m
- -e) 9.190E-05 V/m
--(Answer & Why this question is different.)
- -a) 5.308E+01 cm3/s
- +b) 5.839E+01 cm3/s
- -c) 6.422E+01 cm3/s
- -d) 7.065E+01 cm3/s
- -e) 7.771E+01 cm3/s
3) The current through the windings of a solenoid with n= 2.040E+03 turns per meter is changing at a rate dI/dt=19 A/s. The solenoid is 76 cm long and has a cross-sectional diameter of 3.23 cm. A small coil consisting of N=25turns wraped in a circle of diameter 1.67 cm is placed in the middle of the solenoid such that the plane of the coil is perpendicular to the central axis of the solenoid. Assume that the infinite-solenoid approximation is valid inside the small coil. What is the emf induced in the coil?
- -a) 2.204E-04 V
- -b) 2.425E-04 V
- +c) 2.667E-04 V
- -d) 2.934E-04 V
- -e) 3.227E-04 V
QB:Ch 13:V2
[edit | edit source]QB153089888055
--(Answer & Why this question is different.)
- a) 1.414E+01 cm3/s
- b) 1.556E+01 cm3/s
- c) 1.711E+01 cm3/s
- d) 1.882E+01 cm3/s
- e) 2.070E+01 cm3/s
2) The current through the windings of a solenoid with n= 2.760E+03 turns per meter is changing at a rate dI/dt=8 A/s. The solenoid is 74 cm long and has a cross-sectional diameter of 2.57 cm. A small coil consisting of N=32turns wraped in a circle of diameter 1.49 cm is placed in the middle of the solenoid such that the plane of the coil is perpendicular to the central axis of the solenoid. Assume that the infinite-solenoid approximation is valid inside the small coil. What is the emf induced in the coil?
- a) 1.407E-04 V
- b) 1.548E-04 V
- c) 1.703E-04 V
- d) 1.873E-04 V
- e) 2.061E-04 V
3) A long solenoid has a radius of 0.793 m and 45 turns per meter; its current decreases with time according to , where 2 A and 29 s−1.What is the induced electric fied at a distance 0.216 m from the axis at time t=0.0208 s ?
- a) 1.456E-04 V/m
- b) 1.601E-04 V/m
- c) 1.762E-04 V/m
- d) 1.938E-04 V/m
- e) 2.132E-04 V/m
KEY:QB:Ch 13:V2
[edit | edit source]QB153089888055
--(Answer & Why this question is different.)
- -a) 1.414E+01 cm3/s
- -b) 1.556E+01 cm3/s
- -c) 1.711E+01 cm3/s
- -d) 1.882E+01 cm3/s
- +e) 2.070E+01 cm3/s
2) The current through the windings of a solenoid with n= 2.760E+03 turns per meter is changing at a rate dI/dt=8 A/s. The solenoid is 74 cm long and has a cross-sectional diameter of 2.57 cm. A small coil consisting of N=32turns wraped in a circle of diameter 1.49 cm is placed in the middle of the solenoid such that the plane of the coil is perpendicular to the central axis of the solenoid. Assume that the infinite-solenoid approximation is valid inside the small coil. What is the emf induced in the coil?
- -a) 1.407E-04 V
- +b) 1.548E-04 V
- -c) 1.703E-04 V
- -d) 1.873E-04 V
- -e) 2.061E-04 V
3) A long solenoid has a radius of 0.793 m and 45 turns per meter; its current decreases with time according to , where 2 A and 29 s−1.What is the induced electric fied at a distance 0.216 m from the axis at time t=0.0208 s ?
- -a) 1.456E-04 V/m
- -b) 1.601E-04 V/m
- -c) 1.762E-04 V/m
- +d) 1.938E-04 V/m
- -e) 2.132E-04 V/m
QB:Ch 14:V0
[edit | edit source]QB153089888055
1) In an LC circuit, the self-inductance is 0.0237 H and the capacitance is 6.140E-06 F. At t=0 all the energy is stored in the capacitor, which has a charge of 8.260E-05 C. How long does it take for the capacitor to become completely discharged?
- a) 4.093E-04 s
- b) 4.502E-04 s
- c) 4.952E-04 s
- d) 5.447E-04 s
- e) 5.992E-04 s
- a) -8.659E-01 s
- b) -9.525E-01 s
- c) -1.048E+00 s
- d) -1.153E+00 s
- e) -1.268E+00 s
3) An induced emf of 1.86V is measured across a coil of 59 closely wound turns while the current throuth it increases uniformly from 0.0 to 2.58A in 0.89s. What is the self-inductance of the coil?
- a) 4.821E-01 H
- b) 5.303E-01 H
- c) 5.833E-01 H
- d) 6.416E-01 H
- e) 7.058E-01 H
KEY:QB:Ch 14:V0
[edit | edit source]QB153089888055
1) In an LC circuit, the self-inductance is 0.0237 H and the capacitance is 6.140E-06 F. At t=0 all the energy is stored in the capacitor, which has a charge of 8.260E-05 C. How long does it take for the capacitor to become completely discharged?
- -a) 4.093E-04 s
- -b) 4.502E-04 s
- -c) 4.952E-04 s
- -d) 5.447E-04 s
- +e) 5.992E-04 s
- -a) -8.659E-01 s
- -b) -9.525E-01 s
- +c) -1.048E+00 s
- -d) -1.153E+00 s
- -e) -1.268E+00 s
3) An induced emf of 1.86V is measured across a coil of 59 closely wound turns while the current throuth it increases uniformly from 0.0 to 2.58A in 0.89s. What is the self-inductance of the coil?
- -a) 4.821E-01 H
- -b) 5.303E-01 H
- -c) 5.833E-01 H
- +d) 6.416E-01 H
- -e) 7.058E-01 H
QB:Ch 14:V1
[edit | edit source]QB153089888055
1) An induced emf of 6.75V is measured across a coil of 79 closely wound turns while the current throuth it increases uniformly from 0.0 to 7.76A in 0.115s. What is the self-inductance of the coil?
- a) 9.094E-02 H
- b) 1.000E-01 H
- c) 1.100E-01 H
- d) 1.210E-01 H
- e) 1.331E-01 H
2) In an LC circuit, the self-inductance is 0.0815 H and the capacitance is 6.520E-06 F. At t=0 all the energy is stored in the capacitor, which has a charge of 8.410E-05 C. How long does it take for the capacitor to become completely discharged?
- a) 7.821E-04 s
- b) 8.603E-04 s
- c) 9.463E-04 s
- d) 1.041E-03 s
- e) 1.145E-03 s
- a) -4.120E-01 s
- b) -4.532E-01 s
- c) -4.985E-01 s
- d) -5.483E-01 s
- e) -6.031E-01 s
KEY:QB:Ch 14:V1
[edit | edit source]QB153089888055
1) An induced emf of 6.75V is measured across a coil of 79 closely wound turns while the current throuth it increases uniformly from 0.0 to 7.76A in 0.115s. What is the self-inductance of the coil?
- -a) 9.094E-02 H
- +b) 1.000E-01 H
- -c) 1.100E-01 H
- -d) 1.210E-01 H
- -e) 1.331E-01 H
2) In an LC circuit, the self-inductance is 0.0815 H and the capacitance is 6.520E-06 F. At t=0 all the energy is stored in the capacitor, which has a charge of 8.410E-05 C. How long does it take for the capacitor to become completely discharged?
- -a) 7.821E-04 s
- -b) 8.603E-04 s
- -c) 9.463E-04 s
- -d) 1.041E-03 s
- +e) 1.145E-03 s
- +a) -4.120E-01 s
- -b) -4.532E-01 s
- -c) -4.985E-01 s
- -d) -5.483E-01 s
- -e) -6.031E-01 s
QB:Ch 14:V2
[edit | edit source]QB153089888055
1) In an LC circuit, the self-inductance is 0.0424 H and the capacitance is 7.790E-06 F. At t=0 all the energy is stored in the capacitor, which has a charge of 6.230E-05 C. How long does it take for the capacitor to become completely discharged?
- a) 6.166E-04 s
- b) 6.783E-04 s
- c) 7.461E-04 s
- d) 8.207E-04 s
- e) 9.028E-04 s
- a) -5.192E+00 s
- b) -5.711E+00 s
- c) -6.282E+00 s
- d) -6.910E+00 s
- e) -7.601E+00 s
3) An induced emf of 2.9V is measured across a coil of 51 closely wound turns while the current throuth it increases uniformly from 0.0 to 6.89A in 0.806s. What is the self-inductance of the coil?
- a) 2.549E-01 H
- b) 2.804E-01 H
- c) 3.084E-01 H
- d) 3.392E-01 H
- e) 3.732E-01 H
KEY:QB:Ch 14:V2
[edit | edit source]QB153089888055
1) In an LC circuit, the self-inductance is 0.0424 H and the capacitance is 7.790E-06 F. At t=0 all the energy is stored in the capacitor, which has a charge of 6.230E-05 C. How long does it take for the capacitor to become completely discharged?
- -a) 6.166E-04 s
- -b) 6.783E-04 s
- -c) 7.461E-04 s
- -d) 8.207E-04 s
- +e) 9.028E-04 s
- +a) -5.192E+00 s
- -b) -5.711E+00 s
- -c) -6.282E+00 s
- -d) -6.910E+00 s
- -e) -7.601E+00 s
3) An induced emf of 2.9V is measured across a coil of 51 closely wound turns while the current throuth it increases uniformly from 0.0 to 6.89A in 0.806s. What is the self-inductance of the coil?
- -a) 2.549E-01 H
- -b) 2.804E-01 H
- -c) 3.084E-01 H
- +d) 3.392E-01 H
- -e) 3.732E-01 H
QB:Ch 15:V0
[edit | edit source]QB153089888055
1) An ac generator produces an emf of amplitude 5 V at a frequency of 52 Hz. What is the maximum amplitude of the current if the generator is connected to a 49 mF inductor?
- a) 2.839E-01 A
- b) 3.123E-01 A
- c) 3.435E-01 A
- d) 3.779E-01 A
- e) 4.157E-01 A
2) The output of an ac generator connected to an RLC series combination has a frequency of 4.30E+04 Hz and an amplitude of 6 V. If R =6 Ω, L= 5.20E-03H , and C=8.60E-06 F, what is the rms power transferred to the resistor?
- a) 1.511E-03 Watts
- b) 1.662E-03 Watts
- c) 1.828E-03 Watts
- d) 2.011E-03 Watts
- e) 2.212E-03 Watts
3) The quality factor Q is a dimensionless paramater involving the relative values of the magnitudes of the at three impedances (R, XL, XC). Since Q is calculatedat resonance, XL, XC and only twoimpedances are involved, Q=≡ω0L/R is definedso that Q is large if the resistance is low. Calculate the Q of an LRC series driven at resonance by an applied voltage of of V=V0sin(ωt), where V0=2 V. The resistance, inductance, and capacitance are R =0.25 Ω, L= 5.40E-03H , and C=3.20E-06 F, respectively.
- a) Q = 9.395E+01
- b) Q = 1.080E+02
- c) Q = 1.242E+02
- d) Q = 1.429E+02
- e) Q = 1.643E+02
KEY:QB:Ch 15:V0
[edit | edit source]QB153089888055
1) An ac generator produces an emf of amplitude 5 V at a frequency of 52 Hz. What is the maximum amplitude of the current if the generator is connected to a 49 mF inductor?
- -a) 2.839E-01 A
- +b) 3.123E-01 A
- -c) 3.435E-01 A
- -d) 3.779E-01 A
- -e) 4.157E-01 A
2) The output of an ac generator connected to an RLC series combination has a frequency of 4.30E+04 Hz and an amplitude of 6 V. If R =6 Ω, L= 5.20E-03H , and C=8.60E-06 F, what is the rms power transferred to the resistor?
- -a) 1.511E-03 Watts
- -b) 1.662E-03 Watts
- -c) 1.828E-03 Watts
- -d) 2.011E-03 Watts
- +e) 2.212E-03 Watts
3) The quality factor Q is a dimensionless paramater involving the relative values of the magnitudes of the at three impedances (R, XL, XC). Since Q is calculatedat resonance, XL, XC and only twoimpedances are involved, Q=≡ω0L/R is definedso that Q is large if the resistance is low. Calculate the Q of an LRC series driven at resonance by an applied voltage of of V=V0sin(ωt), where V0=2 V. The resistance, inductance, and capacitance are R =0.25 Ω, L= 5.40E-03H , and C=3.20E-06 F, respectively.
- -a) Q = 9.395E+01
- -b) Q = 1.080E+02
- -c) Q = 1.242E+02
- -d) Q = 1.429E+02
- +e) Q = 1.643E+02
QB:Ch 15:V1
[edit | edit source]QB153089888055
1) The output of an ac generator connected to an RLC series combination has a frequency of 4.00E+04 Hz and an amplitude of 8 V. If R =4 Ω, L= 7.00E-03H , and C=6.60E-06 F, what is the rms power transferred to the resistor?
- a) 1.146E-03 Watts
- b) 1.260E-03 Watts
- c) 1.386E-03 Watts
- d) 1.525E-03 Watts
- e) 1.677E-03 Watts
2) The quality factor Q is a dimensionless paramater involving the relative values of the magnitudes of the at three impedances (R, XL, XC). Since Q is calculatedat resonance, XL, XC and only twoimpedances are involved, Q=≡ω0L/R is definedso that Q is large if the resistance is low. Calculate the Q of an LRC series driven at resonance by an applied voltage of of V=V0sin(ωt), where V0=2 V. The resistance, inductance, and capacitance are R =0.28 Ω, L= 4.70E-03H , and C=2.50E-06 F, respectively.
- a) Q = 1.171E+02
- b) Q = 1.347E+02
- c) Q = 1.549E+02
- d) Q = 1.781E+02
- e) Q = 2.048E+02
3) An ac generator produces an emf of amplitude 97 V at a frequency of 64 Hz. What is the maximum amplitude of the current if the generator is connected to a 55 mF inductor?
- a) 4.386E+00 A
- b) 4.824E+00 A
- c) 5.307E+00 A
- d) 5.838E+00 A
- e) 6.421E+00 A
KEY:QB:Ch 15:V1
[edit | edit source]QB153089888055
1) The output of an ac generator connected to an RLC series combination has a frequency of 4.00E+04 Hz and an amplitude of 8 V. If R =4 Ω, L= 7.00E-03H , and C=6.60E-06 F, what is the rms power transferred to the resistor?
- -a) 1.146E-03 Watts
- -b) 1.260E-03 Watts
- -c) 1.386E-03 Watts
- -d) 1.525E-03 Watts
- +e) 1.677E-03 Watts
2) The quality factor Q is a dimensionless paramater involving the relative values of the magnitudes of the at three impedances (R, XL, XC). Since Q is calculatedat resonance, XL, XC and only twoimpedances are involved, Q=≡ω0L/R is definedso that Q is large if the resistance is low. Calculate the Q of an LRC series driven at resonance by an applied voltage of of V=V0sin(ωt), where V0=2 V. The resistance, inductance, and capacitance are R =0.28 Ω, L= 4.70E-03H , and C=2.50E-06 F, respectively.
- -a) Q = 1.171E+02
- -b) Q = 1.347E+02
- +c) Q = 1.549E+02
- -d) Q = 1.781E+02
- -e) Q = 2.048E+02
3) An ac generator produces an emf of amplitude 97 V at a frequency of 64 Hz. What is the maximum amplitude of the current if the generator is connected to a 55 mF inductor?
- +a) 4.386E+00 A
- -b) 4.824E+00 A
- -c) 5.307E+00 A
- -d) 5.838E+00 A
- -e) 6.421E+00 A
QB:Ch 15:V2
[edit | edit source]QB153089888055
1) An ac generator produces an emf of amplitude 76 V at a frequency of 180 Hz. What is the maximum amplitude of the current if the generator is connected to a 14 mF inductor?
- a) 3.606E+00 A
- b) 3.967E+00 A
- c) 4.364E+00 A
- d) 4.800E+00 A
- e) 5.280E+00 A
2) The output of an ac generator connected to an RLC series combination has a frequency of 6.00E+04 Hz and an amplitude of 2 V. If R =3 Ω, L= 7.20E-03H , and C=6.50E-06 F, what is the rms power transferred to the resistor?
- a) 2.222E-05 Watts
- b) 2.444E-05 Watts
- c) 2.689E-05 Watts
- d) 2.958E-05 Watts
- e) 3.253E-05 Watts
3) The quality factor Q is a dimensionless paramater involving the relative values of the magnitudes of the at three impedances (R, XL, XC). Since Q is calculatedat resonance, XL, XC and only twoimpedances are involved, Q=≡ω0L/R is definedso that Q is large if the resistance is low. Calculate the Q of an LRC series driven at resonance by an applied voltage of of V=V0sin(ωt), where V0=5 V. The resistance, inductance, and capacitance are R =0.17 Ω, L= 4.40E-03H , and C=3.40E-06 F, respectively.
- a) Q = 1.391E+02
- b) Q = 1.600E+02
- c) Q = 1.840E+02
- d) Q = 2.116E+02
- e) Q = 2.434E+02
KEY:QB:Ch 15:V2
[edit | edit source]QB153089888055
1) An ac generator produces an emf of amplitude 76 V at a frequency of 180 Hz. What is the maximum amplitude of the current if the generator is connected to a 14 mF inductor?
- -a) 3.606E+00 A
- -b) 3.967E+00 A
- -c) 4.364E+00 A
- +d) 4.800E+00 A
- -e) 5.280E+00 A
2) The output of an ac generator connected to an RLC series combination has a frequency of 6.00E+04 Hz and an amplitude of 2 V. If R =3 Ω, L= 7.20E-03H , and C=6.50E-06 F, what is the rms power transferred to the resistor?
- -a) 2.222E-05 Watts
- -b) 2.444E-05 Watts
- -c) 2.689E-05 Watts
- -d) 2.958E-05 Watts
- +e) 3.253E-05 Watts
3) The quality factor Q is a dimensionless paramater involving the relative values of the magnitudes of the at three impedances (R, XL, XC). Since Q is calculatedat resonance, XL, XC and only twoimpedances are involved, Q=≡ω0L/R is definedso that Q is large if the resistance is low. Calculate the Q of an LRC series driven at resonance by an applied voltage of of V=V0sin(ωt), where V0=5 V. The resistance, inductance, and capacitance are R =0.17 Ω, L= 4.40E-03H , and C=3.40E-06 F, respectively.
- -a) Q = 1.391E+02
- -b) Q = 1.600E+02
- -c) Q = 1.840E+02
- +d) Q = 2.116E+02
- -e) Q = 2.434E+02
QB:Ch 16:V0
[edit | edit source]QB153089888055
- a) 4.842E+02 V/m
- b) 5.326E+02 V/m
- c) 5.858E+02 V/m
- d) 6.444E+02 V/m
- e) 7.089E+02 V/m
2) What is the radiation pressure on an object that is 9.70E+11 m away from the sun and has cross-sectional area of 0.098 m2? The average power output of the Sun is 3.80E+26 W.
- a) 2.144E-07 N/m2
- b) 2.358E-07 N/m2
- c) 2.594E-07 N/m2
- d) 2.854E-07 N/m2
- e) 3.139E-07 N/m2
- a) 2.058E-03 A
- b) 2.263E-03 A
- c) 2.490E-03 A
- d) 2.739E-03 A
- e) 3.013E-03 A
KEY:QB:Ch 16:V0
[edit | edit source]QB153089888055
- -a) 4.842E+02 V/m
- -b) 5.326E+02 V/m
- +c) 5.858E+02 V/m
- -d) 6.444E+02 V/m
- -e) 7.089E+02 V/m
2) What is the radiation pressure on an object that is 9.70E+11 m away from the sun and has cross-sectional area of 0.098 m2? The average power output of the Sun is 3.80E+26 W.
- +a) 2.144E-07 N/m2
- -b) 2.358E-07 N/m2
- -c) 2.594E-07 N/m2
- -d) 2.854E-07 N/m2
- -e) 3.139E-07 N/m2
- -a) 2.058E-03 A
- -b) 2.263E-03 A
- +c) 2.490E-03 A
- -d) 2.739E-03 A
- -e) 3.013E-03 A
QB:Ch 16:V1
[edit | edit source]QB153089888055
- a) 1.894E-02 A
- b) 2.083E-02 A
- c) 2.291E-02 A
- d) 2.520E-02 A
- e) 2.773E-02 A
2) What is the radiation pressure on an object that is 9.70E+11 m away from the sun and has cross-sectional area of 0.076 m2? The average power output of the Sun is 3.80E+26 W.
- a) 1.611E-07 N/m2
- b) 1.772E-07 N/m2
- c) 1.949E-07 N/m2
- d) 2.144E-07 N/m2
- e) 2.358E-07 N/m2
- a) 5.154E+03 V/m
- b) 5.669E+03 V/m
- c) 6.236E+03 V/m
- d) 6.860E+03 V/m
- e) 7.545E+03 V/m
KEY:QB:Ch 16:V1
[edit | edit source]QB153089888055
- -a) 1.894E-02 A
- -b) 2.083E-02 A
- -c) 2.291E-02 A
- +d) 2.520E-02 A
- -e) 2.773E-02 A
2) What is the radiation pressure on an object that is 9.70E+11 m away from the sun and has cross-sectional area of 0.076 m2? The average power output of the Sun is 3.80E+26 W.
- -a) 1.611E-07 N/m2
- -b) 1.772E-07 N/m2
- -c) 1.949E-07 N/m2
- +d) 2.144E-07 N/m2
- -e) 2.358E-07 N/m2
- -a) 5.154E+03 V/m
- -b) 5.669E+03 V/m
- -c) 6.236E+03 V/m
- -d) 6.860E+03 V/m
- +e) 7.545E+03 V/m
QB:Ch 16:V2
[edit | edit source]QB153089888055
- a) 7.619E+02 V/m
- b) 8.381E+02 V/m
- c) 9.219E+02 V/m
- d) 1.014E+03 V/m
- e) 1.115E+03 V/m
2) What is the radiation pressure on an object that is 8.90E+11 m away from the sun and has cross-sectional area of 0.013 m2? The average power output of the Sun is 3.80E+26 W.
- a) 2.315E-07 N/m2
- b) 2.547E-07 N/m2
- c) 2.801E-07 N/m2
- d) 3.082E-07 N/m2
- e) 3.390E-07 N/m2
- a) 1.841E-02 A
- b) 2.026E-02 A
- c) 2.228E-02 A
- d) 2.451E-02 A
- e) 2.696E-02 A
KEY:QB:Ch 16:V2
[edit | edit source]QB153089888055
- -a) 7.619E+02 V/m
- +b) 8.381E+02 V/m
- -c) 9.219E+02 V/m
- -d) 1.014E+03 V/m
- -e) 1.115E+03 V/m
2) What is the radiation pressure on an object that is 8.90E+11 m away from the sun and has cross-sectional area of 0.013 m2? The average power output of the Sun is 3.80E+26 W.
- -a) 2.315E-07 N/m2
- +b) 2.547E-07 N/m2
- -c) 2.801E-07 N/m2
- -d) 3.082E-07 N/m2
- -e) 3.390E-07 N/m2
- -a) 1.841E-02 A
- +b) 2.026E-02 A
- -c) 2.228E-02 A
- -d) 2.451E-02 A
- -e) 2.696E-02 A