Differentiating,
using
fact
and
fact ,
yields
(
y
f
−
1
(
y
)
−
F
(
f
−
1
(
y
)
)
)
′
=
f
−
1
(
y
)
+
y
1
f
′
(
f
−
1
(
y
)
)
−
f
(
f
−
1
(
y
)
)
1
f
′
(
f
−
1
(
y
)
)
=
f
−
1
(
y
)
.
{\displaystyle {}{\begin{aligned}{\left(yf^{-1}(y)-F{\left(f^{-1}(y)\right)}\right)}'&=f^{-1}(y)+y{\frac {1}{f'(f^{-1}(y))}}-f{\left(f^{-1}(y)\right)}{\frac {1}{f'{\left(f^{-1}(y)\right)}}}\\&=f^{-1}(y).\end{aligned}}}
◻
{\displaystyle \Box }
The graph with its inverse function, and the areas relevant for the computation of the integral of the inverse function.
For this statement, there exists also an easy geometric explanation. When
f
:
[
a
,
b
]
→
R
+
{\displaystyle {}f\colon [a,b]\rightarrow \mathbb {R} _{+}}
is a strictly increasing continuous function
(and therefore induces a bijection between
[
a
,
b
]
{\displaystyle {}[a,b]}
and
[
f
(
a
)
,
f
(
b
)
]
{\displaystyle {}[f(a),f(b)]}
),
then the following relation between the areas holds:
∫
a
b
f
(
s
)
d
s
+
∫
f
(
a
)
f
(
b
)
f
−
1
(
t
)
d
t
=
b
f
(
b
)
−
a
f
(
a
)
,
{\displaystyle {}\int _{a}^{b}f(s)\,ds+\int _{f(a)}^{f(b)}f^{-1}(t)\,dt=bf(b)-af(a)\,,}
or, equivalently,
∫
f
(
a
)
f
(
b
)
f
−
1
(
t
)
d
t
=
b
f
(
b
)
−
a
f
(
a
)
−
∫
a
b
f
(
s
)
d
s
.
{\displaystyle {}\int _{f(a)}^{f(b)}f^{-1}(t)\,dt=bf(b)-af(a)-\int _{a}^{b}f(s)\,ds\,.}
For the primitive function
G
{\displaystyle {}G}
of
f
−
1
{\displaystyle {}f^{-1}}
with starting point
f
(
a
)
{\displaystyle {}f(a)}
, we have, if
F
{\displaystyle {}F}
denotes a primitive function for
f
{\displaystyle {}f}
, the relation
G
(
y
)
=
∫
f
(
a
)
y
f
−
1
(
t
)
d
t
=
∫
f
(
a
)
f
(
f
−
1
(
y
)
)
f
−
1
(
t
)
d
t
=
f
−
1
(
y
)
f
(
f
−
1
(
y
)
)
−
a
f
(
a
)
−
∫
a
f
−
1
(
y
)
f
(
s
)
d
s
=
y
f
−
1
(
y
)
−
a
f
(
a
)
−
F
(
f
−
1
(
y
)
)
+
F
(
a
)
=
y
f
−
1
(
y
)
−
F
(
f
−
1
(
y
)
)
−
a
f
(
a
)
+
F
(
a
)
,
{\displaystyle {}{\begin{aligned}G(y)&=\int _{f(a)}^{y}f^{-1}(t)\,dt\\&=\int _{f(a)}^{f(f^{-1}(y))}f^{-1}(t)\,dt\\&=f^{-1}(y)f(f^{-1}(y))-af(a)-\int _{a}^{f^{-1}(y)}f(s)\,ds\\&=yf^{-1}(y)-af(a)-F(f^{-1}(y))+F(a)\\&=yf^{-1}(y)-F(f^{-1}(y))-af(a)+F(a),\end{aligned}}}
where
−
a
f
(
a
)
+
F
(
a
)
{\displaystyle {}-af(a)+F(a)}
is a constant of integration.