We start from the relations (see the table of Laplace transforms)
where the curved arrows point from the Laplace-transformed functions to the original functions.\, Setting\, \, and dividing by in (1), the convolution property of Laplace transform yields
The substitution \,\, then gives
Thus we may write the formula
Moreover, we obtain
whence we have the other formula
One can utilise the formula (3) for evaluating the improper integral
We have
(see the table of Laplace transforms).\, Dividing this by and integrating from 0 to , we can continue as follows:
Failed to parse (unknown function "\sijoitus"): {\displaystyle \begin{matrix} \int_0^\infty\frac{e^{-tx^2}}{a^2\!+\!x^2}\,dx & \;\curvearrowleft\; \int_0^\infty\frac{dx}{(a^2\!+\!x^2)(s\!+\!x^2)} \;=\; \frac{1}{s\!-\!a^2}\int_0^\infty\left(\frac{1}{a^2\!+\!x^2}-\frac{1}{s\!+\!x^2}\right)dx\\ & \;=\; \frac{1}{s\!-\!a^2}\sijoitus{x=0}{\quad\infty}\left(\frac{1}{a}\arctan\frac{x}{a}-\frac{1}{\sqrt{s}}\arctan\frac{x}{\sqrt{s}}\right)\\ & \;=\; \frac{1}{s\!-\!a^2}\!\cdot\!\frac{\pi}{2}\left(\frac{1}{a}-\frac{1}{\sqrt{s}}\right) \;=\; \frac{\pi}{2a}\!\cdot\!\frac{1}{(a\!+\!\sqrt{s})\sqrt{s}}\\ & \;\curvearrowright\; \frac{\pi}{2a}e^{a^2t}\,{\rm erfc}\,a\sqrt{t} \end{matrix}}
Consequently,
and especially