Jump to content

PlanetPhysics/Quantum Paradoxes and Bell's Inequalities

From Wikiversity

The following is a contributed topic on known quantum paradoxes

Quantum Paradoxes and Bell's Inequalities

[edit | edit source]

There are two major known quantum `paradoxes':

  1. The Scr\"odinger's cat paradox, often expressed as the "Scr\"odinger's cat is neither dead nor alive", but in fact meaning something quite different;
  1. The EPR `Paradox'; several solutions of the

E.P.R `paradox' have been produced:

a. Interpretations of experiments with polarized laser beams favor nonlocality in quantum systems and in the known, physical Universe thus suggesting that the assumptions of the E.P.R paper are the problem and that there is no paradox;

b. An Unified Local Field Theory (ULFT) also claims to solve the EPR `paradox' by assuming locality--which obviously conflicts the polarized laser beam experiments' interpretations.

All Sources

[edit | edit source]

[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46]

References

[edit | edit source]
  1. Einstein, A., Podolsky, B., and Rosen, N. (1935) Can quantum-mechanical description of physical reality be considered complete ?, Phys. Rev. 47, 777--780.
  2. Bell, J. S. (1964) On the Einstein Podolsky Rosen paradox, Physics 1, 195--200.
  3. A. Laudlau. 2002. Apeiron, Vol. 9, No. 1, January 2002 37. Roy Keys Inc.
  4. Bohm, D. and Aharonov, Y. (1957) Discussion of experimental proof for the paradox of Einstein, Rosen, and Podolsky, Phys. Rev. 108, 1070--1076.
  5. Aspect, A., Dalibard, J., and Roger G. (1982) Experimental test of Bell’s inequalities using time-varying analyzers, Phys. Rev. Lett. 49, 1804--1807.
  6. Chernitskii, A.A. (1999) Dyons and interactions in nonlinear (Born--Infeld) electrodynamics, J. High Energy Phys. 1999, no. 12, Paper 10, 1--34.
  7. . Einstein, A. and Tagore, R. (1931) The nature of reality, Modern Review (Calcutta) XLIX, 42--43.
  8. Chernitskii, A.A. (1998) Nonlinear electrodynamics with singularities (modernized Born--Infeld electrodynamics), Helv. Phys. Acta 71, 274--287.
  9. Chernitskii, A.A. (1998) Light beams distortion in nonlinear electrodynamics, J. High Energy Phys. 1998, no. 11, Paper 15, 1--5.
  10. Chernitskii, A.A. (2000) Bidyon or an electromagnetic model for charged particle with spin, .
  11. Chernitskii, A.A. (2002) Born-Infeld electrodynamics: Clifford number and spinor representations, Int. J. Math. and Math. Sci. 31, 77--84.
  12. Devoret, M.H. and Schoelkopf, R.J. (2000) Amplifying quantum signals with the single-electron transistor, Nature 406, 1039--1046.
  13. Clauser J. and Horne M. Detector Inefficiencies in the EPR experiment. Phys. Rev. D 35 (12) 3831--3835 (1987).
  14. Vaidman L. Tests of Bell Inequalities (2001).
  15. Aspect A., Grangier P. and Roger B. Phys. Rev. Lett. 49, 1804--1807 (1982)
  16. Scarani V., Tittel W., Zbinden H., Gisin N. Phys. Lett. A 276 2000 1-7 (2000)
  17. Ou, Z.Y., Pereira S.F., Kimble H.J. and Peng K.C. Phys Rev. Lett. 68, 3663 (1992)
  18. Percival, I.C. Physical Letters., A 244 (6) pp. 495-501 (1998).
  19. Smoot G. Detection of Anisotropy in the Cosmic Blackbody Radiation. Physical Review Letters 39 14 p898 (1977).
  20. Peebles, P.J.E. and Wilkinson D.T. Phys. Rev. 174 2168 (1968).
  21. Longair, M.S. The Physics of Background Radiation. The Deep Universe. Springer Verlag (1995)
  22. Weinberg, S. The First Three Minutes. Basic Books. pp.71-72. (1977).
  23. Dirac P.A.M. The Theory of the electron (parts 1 and 2). Proceedings of the Royal Society in London. A117, p610 and A118, p.351 (1928)
  24. Breit G. An interpretation of Dirac's Theory of the electron. Proceedings of the National Academy of Sciences USA, 14 p.553 (1928)
  25. Schr\"odinger, E. Sitzungsberichte Berlin Akadamie, p.418 (1930).
  26. Dirac P.A.M. Principles of Quantum Mechanics. Oxford. p263. (1958)
  27. Messiah, A. Quantum Mechanics. Vols. 1 and 2., vol.2: Ch XX, pp.922--925.
  28. Bohm D. The Special Theory of Relativity. pp23--25. (1996)
  29. Hafele J. and Keating R. Science, 177 p.166 (1972).
  30. Kundig W. Phys Rev. 129, 2371 (1963)
  31. Ives H. and Stillwell. Journal of the Optical Society of America.m 28 pp. 215-226 (1938) and 31 p369 (1941)
  32. Konopinski E.J. Electromagnetic fields and Relativistic particles McGraw Hill p315-319 (1981)
  33. Poynting J.H. Phil. Trans. 175 p343-361 (1884)
  34. Bohm D. and Hiley B. The Undivided Universe: an ontological interpretation of quantum mechanics. Routledge Publs. pp.288-292 (1993).
  35. Teller, P. An Interpretive Introduction to Quantum Field Theory. Ch 7 (1995).
  36. Cui, H.Y. Direction Adaptation Nature of Coulomb' s Force and Gravitational Force in 4--Dimensional Space--time physics/0102073 (2001).
  37. Cui, H.Y. Method for Deriving the Dirac Equation from the Relativistic Newton' s Second Law., (2001).
  38. Redhead, M. Incompleteness, Nonlocality and Realism. Oxford University Press (1987).
  39. Rembielinski, J. Superluminal Phenomena and the Quantum Preferred Frame., (2000).
  40. Konopinskim, E. J. Electromagnetic Fields and Relativistic Particles. McGraw Hill publ., pp. 441-454 (1981).
  41. d’Espagnat, B. A note on measurement. quant-ph/0101141 (2001).
  42. Wang, L.J., Kuzmich A., Dogariu A. Nature 406, pp. 277-279 (2000).
  43. Olkhovsky, V. S., Recami E. and Salesi G. Superluminal effects for quantum tunneling through TWO successive barriers v4 (2001).
  44. Chernitskii. A.A. Concept of Unified Local Field Theory and Nonlocality of Matter (2001).
  45. Van Flandern. T. The Speed of Gravity--What the Experiments Say. Physics Letters A, 250 1--11 (1998).
  46. Lloyd, S. (2000) Ultimate physical limits to computation, Nature, 406, 1047--1054.