PlanetPhysics/Legendre Polynomials
The Legendre polynomials generate the power series that solves Legendre's differential equation:
This ordinary differential equation with variable coefficients is named in honor of Adrien-Marie Legendre (1752-1833). While quite literally following in the footsteps of Laplace, he developed the Legendre polynomials in a paper on celestial mechanics. In a strange tangled web of fate, the Legendre polynomials are heavily used in electrostatics to solve Laplace's equation in spherical coordinates
The series can be easily generated using the Rodrigues' formula
The first six polynomials are:
\\ \\ \\ \\ \\ \\
Not yet done....
References
[edit | edit source][1] Lebedev, N. "Special functions \& Their Applications." Dover Publications, Inc., New York, 1972.
[2] Jackson, J. "Classical Electrodynamics." John Wiley \& Sons, Inc., New York, 1962.
\htmladdnormallink{http://www-groups.dcs.st-and.ac.uk/\~{}history/Biographies/Legendre.html}{http://www-groups.dcs.st-and.ac.uk/~history/Biographies/Legendre.html} \htmladdnormallink{http://astrowww.phys.uvic.ca/\~{}tatum/celmechs.html}{http://astrowww.phys.uvic.ca/~tatum/celmechs.html} \htmladdnormallink{http://www.du.edu/\~{}jcalvert/math/legendre.htm}{http://www.du.edu/~jcalvert/math/legendre.htm} http://en.wikipedia.org/wiki/Legendre_polynomials