PlanetPhysics/Bibliography for Observable Operator Algebras
Topical References for Operator Algebras in Theoretical Physics and Algebraic Quantum Field Theories (AQFT):
[edit | edit source]\begin{thebibliography} {299}
</ref>[1][2][3][4][5][6][7][8][9][10][11][12][13][14][15][16][17][18][19][20][21][22][23][24][25][26][27][28][29][30][31][32][33][34][35][36][37][38][39][40][41][42][43][44][45][46][47][48][49][50][51][52][53][54][55][56][57][58][59][60][61][62][63][64][65][66][67][68][69][70][71][72][73][74][75][76][77][78][79][80][81][82][83][84][85][86][87][88][89][90][91][92][93][94][95][96][97][98][99][100][101][102][103][104][105][106][107][108][109][110][111][112][113][114][115][116][117][118][119][120][121][122][123][124][125][126][127][128][129][130][131][132][133][134][135][136][137][138][139][140][141][142][143][144][145][146][147][148][149][150][151][152][153][154][155][156][157][158][159][160][161][162][163][164][165][166][167][168][169][170][171][172][173][174][175][176][177][178][179][180][181][182][183][184][185][186][187][188][189][190][191][192][193][194][195][196][197][198][199][200][201][202][203][204][205][206][207][208][209][210][211][212][213][214][215][216][217][218][219][220][221][222][223][224][225][226][227][228][229][230][231][232][233][234][235][236][237][238][239][240][241][242][243][244][245][246][247][248][249][250][251][252][253][254][255][256][257][258][259][260][261][262][263][264][265][266][267][268][269][270][271][272][273][274][275][276][277][278][279][280][281][282][283][284][285][286][287][288][289][290][291][292][293][294][295][296][297][298][299][300][301][302][303][304][305][306][307][308][309][310][311][312][313][314][315][316][317][318][319][320][321][322][323][324][325][326][327][328][329][330][331][332][333][334][335][336][337][338][339][340][341][342][343][344][345][346][347][348][349][350][351][352][353][354][355][356][357][358][359][360][361][362][363][364][365][366][367][368][369][370][371][372][373][374][375][376][377][378][379][380][381][382][383][384]</references>
- ↑ Akutsu, Y. and Wadati, M. (1987). Knot invariants and critical statistical systems. Journal of the Physics Society of Japan , {\mathbf 56}, 839--842.
- ↑ Alexander, J. W. (1930). The combinatorial theory of complexes. Annals of Mathematics , {\mathbf (2) 31}, 294--322.
- ↑ Andrews, G. E., Baxter, R. J. and Forrester, P.J. (1984). Eight vertex SOS model and generalized Rogers--Ramanujan type identities. Journal of Statistical Physics , {\mathbf 35}, 193--266.
- ↑ Aoi, H. and Yamanouchi, T. (in press). Construction of a canonical subfactor for an inclusion of factors with a common Cartan subalgebra. {\rm Hokkaido Mathematical Journal}.
- ↑ Arcuri, R. C., Gomes, J. F. and D. I. Olive (1987). Conformal subalgebras and symmetric spaces. Nuclear Physics B , {\mathbf 285}, 327--339.
- ↑ Artin, E. (1947). Theory of braids. Annals of Mathematics , {\mathbf 48} 101--126.
- ↑ Asaeda, M. (2007). Galois groups and an obstruction to principal graphs of subfactors. International Journal of Mathematics , {\mathbf 18}, 191--202. math.OA/0605318.
- ↑ Asaeda, M. and Haagerup, U. (1999). Exotic subfactors of finite depth with Jones indices and . Communications in Mathematical Physics , {\mathbf 202}, 1--63.
- ↑ Asaeda, M. and Yasuda, S. (preprint 2007). On Haagerup's list of potential principal graphs of subfactors. arXiv:0711.4144.
- ↑ Atiyah, M. (1967). -theory. W. A. Benjamin Inc., New York .
- ↑ Atiyah, M. (1989). Topological quantum field theory. Publication Math\'ematiques IHES , {\mathbf 68}, 175--186.
- ↑ Aubert, P.-L. (1976). Th\'eorie de Galois pour une -alg\`ebre. Commentarii Mathematici Helvetici , {\mathbf 39 (51)}, 411--433.
- ↑ Baez, J. C., Segal, I. E. and Zhou, Z. (1992). Introduction to algebraic and constructive quantum field theory. Princeton University Press .
- ↑ Bakalov, B. and Kirillov, A. Jr. (2001). Lectures on tensor categories and modular functors. University Lecture Series {\mathbf 21}, Amer. Math. Soc.
- ↑ Banica, T. (1997). Le groupe quantique compact libre , Communications in Mathematical Physics , {\mathbf 190}, 143--172.
- ↑ Banica, T. (1998). Hopf algebras and subfactors associated to vertex models. Journal of Functional Analysis , {\mathbf 159}, 243--266.
- ↑ Banica, T. (1999). Representations of compact quantum groups and subfactors. Journal f\"ur die Reine und Angewandte Mathematik , {\mathbf 509}, 167--198.
- ↑ Banica, T. (1999). Fusion rules for representations of compact quantum groups. Expositiones Mathematicae , {\mathbf 17}, 313--337.
- ↑ Banica, T. (1999). Symmetries of a generic coaction. Mathematische Annalen , {\mathbf 314}, 763--780.
- ↑ Banica, T. (2000). Compact Kac algebras and commuting squares. Journal of Functional Analysis , {\mathbf 176}, 80--99.
- ↑ Banica, T. (2001). Subfactors associated to compact Kac algebras. Integral Equations Operator Theory , {\mathbf 39}, 1--14.
- ↑ Banica, T. (2002). Quantum groups and Fuss-Catalan algebras. Communications in Mathematical Physics , {\mathbf 226}, 221--232
- ↑ Banica, T. (2005). The planar algebra of a coaction. Journal of Operator Theory {\mathbf 53}, 119--158.
- ↑ Banica, T. (2005). Quantum automorphism groups of homogeneous graphs. Journal of Functional Analysis , {\mathbf 224}, 243--280.
- ↑ Banica, T. (2005). Quantum automorphism groups of small metric spaces. Pacific Journal of Mathematics , {\mathbf 219}, 27--51.
- ↑ Baxter, R. J. (1981).Rogers--Ramanujan identities in the Hard Hexagon model. Journal of Statistical Physics , {\mathbf 26}, 427--452.
- ↑ Baxter, R. J. (1982). Exactly solved models in statistical mechanics . Academic Press, New York.
- ↑ Baxter, R. J. (1988). The superintegrable chiral Potts model. Physics Letters A , {\mathbf 133}, 185--189.
- ↑ Baxter, R. J. (1989). A simple solvable Hamiltonian. Physics Letters A , {\mathbf 140}, 155--157.
- ↑ Baxter, R. J. (1989). Superintegrable Chiral Potts model: thermodynamic properties, an "inverse" model, and a simple associated Hamiltonian. {\em Journal of Statistical Physics}, {\mathbf 57}, 1--39.
- ↑ Baxter, R. J., Kelland, S. B. and Wu, F. Y. (1976). Potts model or Whitney Polynomial. Journal of Physics. A. Mathematical and General , {\mathbf 9}, 397--406.
- ↑ Baxter, R. J., Perk, J. H. H. and Au-Yang, H. (1988). New solutions of the star-triangle relations for the chiral Potts model. Physics Letters A {\mathbf 128}, 138--142.
- ↑ Baxter, R. J., Temperley, H. N. V. and Ashley, S. E. (1978). Triangular Potts model and its transition temperature and related models. Proceedings of the Royal Society of London A , {\mathbf 358}, 535--559.
- ↑ Behrend, R. E., Evans, D. E. (preprint 2003). Integrable Lattice Models for Conjugate . hep-th/0309068.
- ↑ Behrend, R. E., Pearce, P. A., Petkova, V. B. and Zuber, J-B. (2000). Boundary conditions in rational conformal field theories. Nuclear Physics B , {\mathbf 579}, 707--773.
- ↑ Belavin, A. A., Polyakov, A. M. and Zamolodchikov, A. B. (1980). Infinite conformal symmetry in two-dimensional quantum field theory. Nuclear Physics B , {\mathbf 241}, 333--380.
- ↑ Berezin, F. A. (1966). A method of second quantization. Academic Press , London/New York.
- ↑ Bertozzini, P., Conti, R. and Longo, R. (1998) Covariant sectors with infinite dimension and positivity of the energy. Communications in Mathematical Physics , {\mathbf 193}, 471--492.
- ↑ Bion-Nadal, J. (1992). Subfactor of the hyperfinite factor with Coxeter graph as invariant. Journal of Operator Theory , {\mathbf 28}, 27--50.
- ↑ Birman, J. (1974). Braids, links and mapping class groups. Annals of Mathematical Studies , {\mathbf 82}.
- ↑ Birman, J. S. and Wenzl, H. (1989). Braids, link polynomials and a new algebra. Transactions of the American Mathematical Society , {\mathbf 313}, 249--273.
- ↑ Bisch, D. (1990). On the existence of central sequences in subfactors. Transactions of the American Mathematical Society , {\mathbf 321}, 117--128.
- ↑ Bisch, D. (1992). Entropy of groups and subfactors. Journal of Functional Analysis , {\mathbf 103}, 190--208.
- ↑ Bisch, D. (1994). A note on intermediate subfactors. Pacific Journal of Mathematics , {\mathbf 163}, 201--216.
- ↑ Bisch, D. (1994). On the structure of finite depth subfactors. in Algebraic methods in operator theory , (ed. R. Curto and P. E. T. J\"orgensen), Birkh\"auser, 175--194.
- ↑ Bisch, D. (1994). Central sequences in subfactors II. Proceedings of the American Mathematical Society , {\mathbf 121}, 725--731.
- ↑ Bisch, D. (1994). An example of an irreducible subfactor of the hyperfinite II factor with rational, non-integer index. {\em Journal f\"ur die Reine und Angewandte Mathematik}, {\mathbf 455}, 21--34.
- ↑ Bisch, D. (1997). Bimodules, higher relative commutants and the fusion algebra associated to a subfactor. In Operator algebras and their applications . Fields Institute Communications, Vol. 13, American Math. Soc., 13--63.
- ↑ Bisch, D. (1998). Principal graphs of subfactors with small Jones index. Mathematische Annalen , {\mathbf 311}, 223--231.
- ↑ Bisch, D. (2002). Subfactors and planar algebras. Proc. ICM-2002, Beijing , {\mathbf 2}, 775--786.
- ↑ Bisch, D. and Haagerup, U. (1996). Composition of subfactors: New examples of infinite depth subfactors. {\em Annales Scientifiques de l'\'Ecole Normale Superieur}, {\mathbf 29}, 329--383.
- ↑ Bisch, D. and Jones, V. F. R. (1997). Algebras associated to intermediate subfactors. Inventiones Mathematicae , {\mathbf 128}, 89--157.
- ↑ Bisch, D. and Jones, V. F. R. (1997). A note on free composition of subfactors. In Geometry and Physics, (Aarhus 1995) , Marcel Dekker, Lecture Notes in Pure and Applied Mathematics, Vol. 184, 339--361.
- ↑ Bisch, D. and Jones, V. F. R. (2000). Singly generated planar algebras of small dimension. Duke Mathematical Journal , {\mathbf 101}, 41--75.
- ↑ Bisch, D. and Jones, V. F. R. (2003). Singly generated planar algebras of small dimension. II Advances in Mathematics , {\mathbf 175}, 297--318.
- ↑ Bisch, D., Nicoara, R. and Popa, S. (2007). Continuous families of hyperfinite subfactors with the same standard invariant. International Journal of Mathematics , {\mathbf 18}, 255--267. math.OA/0604460.
- ↑ Bisch, D. and Popa, S. (1999). Examples of subfactors with property T standard invariant. Geometric and Functional Analysis , {\mathbf 9}, 215--225.
- ↑ B\"ockenhauer, J. (1996). An algebraic formulation of level one Wess-Zumino-Witten models. Reviews in Mathematical Physics , {\mathbf 8}, 925--947.
- ↑ B\"ockenhauer, J. and Evans, D. E. (1998). Modular invariants, graphs and -induction for nets of subfactors I. Communications in Mathematical Physics , {\mathbf 197}, 361--386.
- ↑ B\"ockenhauer, J. and Evans, D. E. (1999). Modular invariants, graphs and -induction for nets of subfactors II. Communications in Mathematical Physics , {\mathbf 200}, 57--103.
- ↑ B\"ockenhauer, J. and Evans, D. E. (1999). Modular invariants, graphs and -induction for nets of subfactors III. Communications in Mathematical Physics , {\mathbf 205}, 183--228.
- ↑ B\"ockenhauer, J. and Evans, D. E. (2000). Modular invariants from subfactors: Type I coupling matrices and intermediate subfactors. Communications in Mathematical Physics , {\mathbf 213}, 267--289.
- ↑ B\"ockenhauer, J. and Evans, D. E. (2002). Modular invariants from subfactors. in Quantum Symmetries in Theoretical Physics and Mathematics (ed. R. Coquereaux et al.), Comtemp. Math. {\mathbf 294}, Amer. Math. Soc., 95--131. math.OA/0006114.
- ↑ B\"ockenhauer, J. and Evans, D. E. (2001). Modular invariants and subfactors. in Mathematical Physics in Mathematics and Physics (ed. R. Longo), The Fields Institute Communications {\mathbf 30}, Providence, Rhode Island: AMS Publications, 11--37. math.OA/0008056.
- ↑ B\"ockenhauer, J., Evans, D. E. and Kawahigashi, Y. (1999). On -induction, chiral generators and modular invariants for subfactors. Communications in Mathematical Physics , {\mathbf 208}, 429--487. math.OA/9904109.
- ↑ B\"ockenhauer, J., Evans, D. E. and Kawahigashi, Y. (2000). Chiral structure of modular invariants for subfactors. Communications in Mathematical Physics , {\mathbf 210}, 733--784. math.OA/9907149.
- ↑ B\"ockenhauer, J., Evans, D. E. and Kawahigashi, Y. (2001). Longo-Rehren subfactors arising from -induction. Publications of the RIMS, Kyoto University , {\mathbf 37}, 1--35. math.OA/0002154.
- ↑ de Boer, J. and Goeree, J. (1991). Markov traces and II factors in conformal field theory. Communications in Mathematical Physics , {\mathbf 139}, 267--304.
- ↑ Bongaarts, P. J. M. (1970). The electron-positron field, coupled to external electromagnetic potentials as an elementary -algebra theory. Annals of Physics , {\mathbf 56}, 108--138.
- ↑ Bratteli, O. (1972). Inductive limits of finite dimensional -algebras. Transactions of the American Mathematical Society , {\mathbf 171}, 195--234.
- ↑ Brunetti, R., Guido, D. and Longo, R. (1993). Modular structure and duality in conformal quantum field theory. Communications in Mathematical Physics , {\mathbf 156}, 201--219.
- ↑ Brunetti, R., Guido, D. and Longo, R. (1995). Group cohomology, modular theory and space-time symmetries. Reviews in Mathematical Physics , {\mathbf 7} 57--71.
- ↑ Buchholz, D., Doplicher, S., Longo, R. and Roberts, J. E. (1993). Extensions of automorphisms and gauge symmetries. Communications in Mathematical Physics , {\mathbf 155}, 123--134.
- ↑ Buchholz, D., Mack, G. and Todorov, I. (1988). The current algebra on the circle as a germ of local field theories. Nuclear Physics B (Proc. Suppl.) , {\mathbf B5}, 20--56.
- ↑ Buchholz, D. and Schulz-Mirbach, H. (1990). Haag duality in conformal quantum field theoery, Reviews in Mathematical Physics , {\mathbf 2} 105--125.
- ↑ Camp, W., and Nicoara, R. (preprint 2007). Subfactors and Hadamard matrices. arXiv:0704.1128.
- ↑ Cappelli, A., Itzykson, C. and Zuber, J.-B. (1987). The -- classification of minimal and conformal invariant theories. Communications in Mathematical Physics , {\mathbf 113}, 1--26.
- ↑ Carpi, S. (1998). Absence of subsystems for the Haag-Kastler net generated by the energy-momentum tensor in two-dimensional conformal field theory. Letters in Mathematical Physics , {\mathbf 45}, 259--267.
- ↑ Carpi, S. (2003). The Virasoro algebra and sectors with infinite statistical dimension. Annales Henri Poincar\'e , {\mathbf 4}, 601--611. math.OA/0203027.
- ↑ Carpi, S. (2004). On the representation theory of Virasoro nets. Communications in Mathematical Physics , {\mathbf 244}, 261--284. math.OA/0306425.
- ↑ Carpi, S. (2005). Intersecting Jones projections. International Journal of Mathematics , {\mathbf 16}, 687--691. math.OA/0412457.
- ↑ Carpi, S. and Conti, R. (2001). Classification of subsystems for local nets with trivial superselection structure. Communications in Mathematical Physics , {\mathbf 217}, 89--106.
- ↑ Carpi, S. and Conti, R. (2005). Classification of subsystems for graded-local nets with trivial superselection structure. Communications in Mathematical Physics . {\mathbf 253}, 423--449. math.OA/0312033.
- ↑ Carpi, S., Kawahigashi, Y. and Longo, R. (in press). Structure and classification of superconformal nets. Annales Henri Poincar\'e . arXiv:0705.3609.
- ↑ Carpi, S. and Weiner, M. (2005). On the uniqueness of diffeomorphism symmetry in Conformal Field Theory. Communications in Mathematical Physics , {\mathbf 258}, 203--221. math.OA/0407190.
- ↑ Ceccherini, T. (1996). Approximately inner and centrally free commuting squares of type factors and their classification. Journal of Functioanl Analysis , {\mathbf 142}, 296--336.
- ↑ Chen, J. (1993). The Connes invariant and cohomology of groups. Ph. D. dissertation at University of California, Berkeley.
- ↑ Choda, M. (1989). Index for factors generated by Jones' two sided sequence of projections. Pacific Journal of Mathematics , {\mathbf 139}, 1--16.
- ↑ Choda, M. (1991). Entropy for -endomorphisms and relative entropy for subalgebras. Journal of Operator Theory , {\mathbf 25}, 125--140.
- ↑ Choda, M. (1992). Entropy for canonical shift. Transactions of the American Mathematical Society , {\mathbf 334}, 827--849.
- ↑ Choda, M. (1993). Duality for finite bipartite graphs (with applications to II factors). Pacific Journal of Mathematics , {\mathbf 158}, 49--65.
- ↑ Choda, M. (1994). Square roots of the canonical shifts. Journal of Operator Theory , {\mathbf 31}, 145--163.
- ↑ Choda, M. (1994). Extension algebras via -endomorphisms. in {\em Subfactors --- Proceedings of the Taniguchi Symposium, Katata ---}, (ed. H. Araki, et al.), World Scientific, 105--128.
- ↑ Choda, M. and Hiai, F. (1991). Entropy for canonical shifts. II. Publications of the RIMS, Kyoto University , {\mathbf 27}, 461--489.
- ↑ Choda, M. and Kosaki, H. (1994). Strongly outer actions for an inclusion of factors. Journal of Functional Analysis , {\mathbf 122}, 315--332.
- ↑ Christensen, E. (1979). Subalgebras of a finite algebra. Mathematische Annalen , {\mathbf 243}, 17--29.
- ↑ Combes, F. (1968). Poids sur une -alg\`ebre. {\em Journal de Math\'ematiques Pures et Appliqu\'ees}, {\mathbf 47}, 57--100.
- ↑ Connes, A. (1973). Une classification des facteurs de type III. Annales Scientifiques de l'\'Ecole Normale Sup\'erieure , {\mathbf 6}, 133--252.
- ↑ Connes, A. (1975). Outer conjugacy classes of automorphisms of factors. Annales Scientifiques de l'\'Ecole Normale Sup\'erieure , {\mathbf 8}, 383--419.
- ↑ Connes, A. (1975). Hyperfinite factors of type III-0 and Krieger's factors. Journal of Functional Analysis , {\mathbf 18}, 318--327.
- ↑ Connes, A. (1975). Sur la classification des facteurs de type II. {\em Comptes Rendus de l'Academie des Sciences, S\'erie I, Math\'ematiques}, {\mathbf 281}, 13--15.
- ↑ Connes, A. (1975). A factor not antiisomorphic to itself. Annals of Mathematics , {\mathbf 101}, 536--554.
- ↑ Connes, A. (1976). Classification of injective factors. Annals of Mathematics , {\mathbf 104}, 73--115.
- ↑ Connes, A. (1976). Outer conjugacy of automorphisms of factors. Symposia Mathematica , {\mathbf XX}, 149--160.
- ↑ Connes, A. (1976). On the classification of von Neumann algebras and their automorphisms. Symposia Mathematica , {\mathbf XX}, 435--478.
- ↑ Connes, A. (1977). Periodic automorphisms of the hyperfinite factor of type II. Acta Scientiarum Mathematicarum , {\mathbf 39}, 39--66.
- ↑ Connes, A. (1978). On the cohomology of operator algebras. Journal of Functional Analysis , {\mathbf 28}, 248--253.
- ↑ Connes, A. (1979). Sur la th\'eorie non commutative de l'integration. Springer Lecture Notes in Math. , {\mathbf 725}, 19--143.
- ↑ Connes, A. (1980). -algebres et geom\`etrie diff\'erentielle. {\em Comptes Rendus de l'Academie des Sciences, S\'erie I, Math\'ematiques}, 559--604.
- ↑ Connes, A. (1980). Spatial theory of von Neumann algebras. Journal of Functional Analysis , {\mathbf 35} (1980), 153--164.
- ↑ Connes, A. (1981). An analogue of the Thom isomorphism for crossed products of a -algebra by an action of . Advances in Mathematics , {\mathbf 39}, 311--355.
- ↑ Connes, A. (1982). Foliations and Operator Algebras. {\em Proceedings of Symposia in Pure Mathematics. ed. R. V. Kadison}, {\mathbf 38}, 521--628.
- ↑ Connes, A. (1982). Classification des facteurs. Proceedings of the Symposia in Pure Mathematics (II) , {\mathbf 38}, 43--109.
- ↑ Connes, A. (1985). Non-commutative differential geometry I--II. Publication Math\'ematiques IHES , {\mathbf 62}, 41--144.
- ↑ Connes, A. (1985). Factors of type III-1, property and closure of inner automorphisms. Journal of Operator Theory , {\mathbf 14}, 189--211.
- ↑ Connes, A. (1985). Non Commutative Differential Geometry, Chapter II: De Rham homology and non commutative algebra. Publication Math\'ematiques IHES , {\mathbf 62}, 257--360.
- ↑ Connes, A. (1994). Noncommutative geometry. Academic Press .
- ↑ Connes, A. and Evans, D. E. (1989). Embeddings of -current algebras in non-commutative algebras of classical statistical mechanics. {\em Communications in Mathematical Physics}, {\mathbf 121}, 507--525.
- ↑ Connes, A. and Higson, N. (1990). D\'eformations, morphismes asymptotiques et -th\'eorie bivariante. {\em Comptes Rendus de l' Academie des Sciences, S\'erie I, Math\'ematiques}, {\mathbf 311}, 101--106.
- ↑ Connes, A. and Karoubi, M. (1988). Caractere multiplicatif d'un module de Fredholm. -theory , {\mathbf 2} 431--463.
- ↑ Connes, A. and Krieger, W. (1977). Measure space automorphism groups, the normalizer of their full groups, and approximate finiteness. Journal of Functional Analysis , {\mathbf 24}, 336--352.
- ↑ Connes, A. and Rieffel, M. (1985). Yang-Mills for non-commutative tori. Contemporary Mathematics , {\mathbf 62}, 237--265.
- ↑ Connes, A. and Skandalis, G. (1984). The longitudinal index theorem for foliations. Publications of the RIMS, Kyoto University , {\mathbf 20}, 1139--1183.
- ↑ Connes, A. and St\"ormer, E. (1975). Entropy for automorphisms of von Neumann algebras. Acta Mathematica , {\mathbf 134}, 289--306.
- ↑ Connes, A. and Takesaki, M. (1977). The flow of weights on factors of type III. Tohoku Mathematical Journal , {\mathbf 29}, 73--555.
- ↑ Conti, R., Doplicher, S., and Roberts, J. E. (2001). Superselection theory for subsystems. Communications in Mathematical Physics , {\mathbf 218}, 263--281.
- ↑ Conti, R. and Pinzari, C. (1996). Remarks on the index of endomorphisms of Cuntz algebras. Journal of Functional Analysis , {\mathbf 142}, 369--405.
- ↑ Coquereaux, R. (2005) The Ocneanu quantum groupoid. in Algebraic structures and their representations , Contemporary Mathematics , {\mathbf 376}, 227--247. hep-th/0311151.
- ↑ Coquereaux, R. and Schieber, G. (2002). Twisted partition functions for ADE boundary conformal field theories and Ocneanu algebras of quantum symmetries. Journal of Geometry and Physics , {\mathbf 42}, 216--258.
- ↑ Coquereaux, R. and Schieber, G. (2003). Determination of quantum symmetries for higher ADE systems from the modular T matrix. Journal of Mathematical Physics , {\mathbf 44}, 3809--3837. hep-th/0203242. \ bibitem{Cn} Cuntz, J. (1977). Simple -algebras generated by isometries. Communications in Mathematical Physics , {\mathbf 57}, 173--185.
- ↑ Cuntz, J. (1981). -theory for certain -algebras. Annals of Mathematics , {\mathbf 113}, 181--197.
- ↑ Cuntz, J. (1984). -theory and -algebras. Lecture Notes in Mathematics, Springer-Verlag , {\mathbf 1046}.
- ↑ Cuntz, J. (1981). A class of -algebras and topological Markov chains II. Reducible Markov chains and the functor for -algebras. Inventiones Mathematica , {\mathbf 63}, 25--40.
- ↑ Cuntz, J. and Krieger, W. (1980). A class of -algebras and topological Markov chains. Inventiones Mathematicae , {\mathbf 56}, 251--268.
- ↑ Cvetkovi\'c, D., Doob, M. and Gutman, I. (1982). On graphs whose spectral radius does not exceed . Ars Combinatoria , {\mathbf 14}, 225--239.
- ↑ D'Antoni, C., Fredenhagen, K. and K\"oster, S. (preprint 2003). Implementation of conformal covariance by diffeomorphism symmetry. math-ph/0312017.
- ↑ D'Antoni, C., Longo, R. and Radulescu, F. (2001). Conformal nets, maximal temperature and models from free probability. Journal of Operator Theory , {\mathbf 45}, 195--208.
- ↑ Date, E., Jimbo, M., Kuniba, A., Miwa, T. and Okado, M. (1988). Exactly solvable SOS models II: Proof of the star-triangle relation and combinatorial identities. Advanced Studies in Pure Mathematics , {\mathbf 16}, 17--122.
- ↑ Date, E., Jimbo, M., Miwa, T. and Okado, M. (1987). Solvable lattice models. Theta functions --- Bowdoin 1987, Part 1 , Proceedings of Symposia in Pure Mathematics Vol. 49, American Mathematical Society, Providence, R.I., pp. 295--332.
- ↑ David, M. C. (1996). Paragroupe d'Adrian Ocneanu et alg\`ebre de Kac. Pacific Journal of Mathematics , {\mathbf 172}, 331--363.
- ↑ Degiovanni, P. (1990). conformal field theories. Communications in Mathematical Physics , {\mathbf 127}, 71--99.
- ↑ Degiovanni, P. (1992). Moore and Seiberg's equations and 3D toplogical field theory. {\mathbf 145}, 459--505.
- ↑ Di Francesco, P. (1992). Integrable lattice models, graphs, and modular invariant conformal field theories. International Journal of Modern Physics A , {\mathbf 7}, 407--500.
- ↑ Di Francesco, P., Mathieu, P. and S\'en\'echal, D. (1996). Conformal Field Theory. Springer-Verlag, New York.
- ↑ Di Francesco, P., Saleur, H. and Zuber, J.-B. (1987). Modular invariance in non-minimal two-dimensional conformal field theories. Nuclear Physics , {\mathbf B285}, 454--480.
- ↑ Di Francesco, P. and Zuber, J.-B. (1990). lattice integrable models associated with graphs. Nuclear Physics B , {\mathbf 338}, 602--646.
- ↑ Di Francesco, P. and Zuber, J.-B. (1990). lattice integrable models and modular invariance. in Recent Developments in Conformal Field Theories, Trieste, 1989 , World Scientific, 179--215.
- ↑ Dijkgraaf, R., Pasquier, V. and Roche, Ph. (1990). Quasi Hopf algebras, group cohomology and orbifold models. Nuclear Physics B(Proc. Suppl.) , {\mathbf 18}, 60--72.
- ↑ Dijkgraaf, R., Pasquier, V. and Roche, Ph. (1991). Quasi-quantum groups related to orbifold models. {\em Proceedings of the International Colloquium on Modern Quantum Field Theory}, World Scientific, Singapore, 375--383.
- ↑ Dijkgraaf, R., Vafa, C., Verlinde, E. and Verlinde, H. (1989). The operator algebra of orbifold models. Communications in Mathematical Physics , {\mathbf 123}, 485--526.
- ↑ Dijkgraaf, R. and Witten, E. (1990). Topological gauge theories and group cohomology. Communications in Mathematical Physics , {\mathbf 129}, 393--429.
- ↑ Dixmier, J. (1964). Les -algebras et leurs repr\'esentations. Gauthier-Villars .
- ↑ Dixmier, J. (1967). On some -algebras considered by Glimm. Journal of Functional Analysis , {\mathbf 1}, 182--203.
- ↑ Dixmier, J. (1969). {\em Les alg\`ebres d'op\'erateurs dans l'espace Hilbertien. (Alg\`ebres de von Neumann.)} 2nd ed. Gauthier Villars, Paris.
- ↑ Dixmier, J. (1981). Von Neumann Algebras. North-Holland .
- ↑ Dixmier, J. and C. Lance (1969). Deux nouveaux facteurs de type II. Inventiones Mathematicae , {\mathbf 7}, 226--234.
- ↑ Dixon, L., Harvey, J. A., Vafa, C. and Witten, E. (1985). Strings on orbifolds. Nuclear Physics B , {\mathbf 261}, 678--686.
- ↑ Dixon, L., Harvey, J. A., Vafa, C. and Witten, E. (1986). Strings on orbifolds. Nuclear Physics B , {\mathbf 274}, 285--314.
- ↑ Dong, C. and Xu, F. (2006). Conformal nets associated with lattices and their orbifolds. Advances in Mathematics , {\mathbf 206}, 279--306. math.OA/0411499.
- ↑ Doplicher, S., Haag, R. and Roberts, J. E. (1969). Fields, observables and gauge transformations II. Communications in Mathematical Physics , {\mathbf 15}, 173--200.
- ↑ Doplicher, S., Haag, R. and Roberts, J. E. (1971, 74). Local obsevables and particle statistics, I,II. Communications in Mathematical Physics , {\mathbf 23}, 199--230 and {\mathbf 35}, 49--85.
- ↑ Doplicher, S. and Longo, R. (1984). Standard and split inclusions of von Neumann algebras. Inventiones Mathematicae , {\mathbf 75}, 493--536. bibitem{DP} Doplicher, S. and , Piacitelli, G. (preprint 2002). Any compact group is a gauge group. hep-th/0204230.
- ↑ Doplicher, S., Pinzari, C. and Roberts, J. E. (2001). An algebraic duality theory for multiplicative unitaries. International Journal of Mathematics , {\mathbf 12}, 415--459.
- ↑ Doplicher, S. and Roberts, J. E. (1989). Endomorphisms of Failed to parse (unknown function "\sp"): {\displaystyle C\sp *} -algebras, cross products and duality for compact groups. Annals of Mathematics , {\mathbf 130}, 75--119.
- ↑ Doplicher, S. and Roberts, J. E. (1989). A new duality theory for compact groups. Inventiones Mathematica , {\mathbf 98}, 157--218.
- ↑ Drinfeld, V. G. (1986). Quantum groups. Proc. ICM-86, Berkeley , 798--820.
- ↑ Dunford, N. and Schwartz, J. T. (1958). Linear Operators Volume I. Interscience.
- ↑ Durhuus, B., Jakobsen, H. P. and Nest, R. (1993). Topological quantum field theories from generalized -symbols. Reviews in Mathematical Physics , {\mathbf 5}, 1--67.
- ↑ Elliott, G. A. (1976). On the classification of inductive limits of sequences of semisimple finite-dimensional algebras. Journal of Algebra , {\mathbf 38}, 29--44.
- ↑ Enock, M. (1998). Inclusions irr\'educibles de facteurs et unitaires multiplicatifs, II. Journal of Functional Analysis , {\mathbf 154}, 67--109.
- ↑ Enock, M. (1999). Sous-facteurs interm\'ediaires et groupes quantiques mesur\'es. Journal of Operator Theory , {\mathbf 42}, 305--330.
- ↑ Enock, M. (2000). Inclusions of von Neumann algebras and quantum groupoids, II. Journal of Functional Analysis , {\mathbf 178}, 156--225.
- ↑ Enock, M. and Nest, R. (1996). Irreducible inclusions of factors multiplicative unitaries, and Kac algebras. Journal of Functional Analysis , {\mathbf 137}, 466--543.
- ↑ Enock, M. and Vallin, J.-M. (2000). Inclusions of von Neumann algebras and quantum groupoids. Journal of Functional Analysis , {\mathbf 172}, 249--300.
- ↑ Erlijman, J. (1998). New braided subfactors from braid group representations. Transactions of the American Mathematical Society , {\mathbf 350}, 185--211.
- ↑ Erlijman, J. (2000). Two-sided braid subfactors and asymptotic inclusions. Pacific Journal of Mathematics , {\mathbf 193}, 57--78.
- ↑ Erlijman, J. (2001). Multi-sided braid subfactors. Canadian Journal of Mathematics , {\mathbf 53}, 546--564.
- ↑ Evans, D.E. (1984). The -algebras of topological Markov chains. Tokyo Metropolitan University Lecture Notes .
- ↑ Evans, D. E. (1985). The -algebras of the two-dimensional Ising model. Springer Lecture Notes in Mathematics, {\mathbf 1136}, 162--176.
- ↑ Evans, D. E. (1985). Quasi-product states on -algebras. {\em Operator algebras and their connections with topology and ergodic theory}, Springer Lecture Notes in Mathematics, {\mathbf 1132}, 129--151.
- ↑ Evans, D. E. (1990). -algebraic methods in statistical mechanics and field theory. International Journal of Modern Physics B , {\mathbf 4}, 1069--1118.
- ↑ Evans, D. E. (2002). Fusion rules of modular invariants. Reviews in Mathematical Physics , {\mathbf 14}, 709--731. math.OA/0204278
- ↑ Evans, D. E. (preprint 2002). Critical phenomena, modular invariants and operator algebras. math.OA/0204281.
- ↑ Evans, D. E. and Gould, J. D. (1989). Dimension groups, embeddings and presentations of AF algebras associated to solvable lattice models. Modern Physics Letters A , {\mathbf 20}, 1883--1890.
- ↑ Evans, D. E. and Gould, J. D. (1994). Dimension groups and embeddings of graph algebras. International Journal of Mathematics , {\mathbf 5}, 291--327.
- ↑ Evans, D. E. and Gould, J. D. (1994). Presentations of AF algebras associated to -graphs. Publications of the RIMS, Kyoto University , {\mathbf 30}, 767--798.
- ↑ Evans, D. E. and Kawahigashi, Y. (1993). Subfactors and conformal field theory. in "Quantum and non-commutative analysis", 341--369, Kluwer Academic.
- ↑ Evans, D. E. and Kawahigashi, Y. (1994). Orbifold subfactors from Hecke algebras. Communications in Mathematical Physics , {\mathbf 165}, 445--484.
- ↑ Evans, D. E. and Kawahigashi, Y. (1994). The commuting squares produce as principal graph. Publications of the RIMS, Kyoto University , {\mathbf 30}, 151--166.
- ↑ Evans, D. E. and Kawahigashi, Y. (1995). On Ocneanu's theory of asymptotic inclusions for subfactors, topological quantum field theories and quantum doubles. International Journal of Mathematics , {\mathbf 6}, 205--228.
- ↑ Evans, D. E. and Kawahigashi, Y. (1995). From subfactors to -dimensional topological quantum field theories and back --- a detailed account of Ocneanu's theory ---. International Journal of Mathematics , {\mathbf 6}, 537--558.
- ↑ Evans, D. E. and Kawahigashi, Y. (1998). Orbifold subfactors from Hecke algebras II ---Quantum doubles and braiding---. Communications in Mathematical Physics , {\mathbf 196}, 331--361.
- ↑ Evans, D. E. and Kawahigashi, Y. (1998). Quantum symmetries on operator algebras. Oxford University Press .
- ↑ Evans, D. E. and Pinto, P. R. (2003). Subfactor realisation of modular invariants. Communications in Mathematical Physics , {\mathbf 237}, 309--363. math.OA/0309174.
- ↑ Evans, D. E. and Pinto, P. R. (preprint 2003). Modular invariants and their fusion rules. math.OA/0309175
- ↑ Evans, D. E. and Pinto, P. R. (preprint 2004). Modular invariants and the double of the Haagerup subfactor.
- ↑ Fack, T. and Mar\`echal, O (1979). Sur la classification des sym\`etries des -alg\'ebres UHF. Canadian Journal of Mathematics , {\mathbf 31}, 496--523.
- ↑ Fack, T. and Mar\`echal, O. (1981). Sur la classification des automorphisms p\`eriodiques des -alg\'ebres UHF. Journal of Functional Analysis , {\mathbf 40}, 267--301.
- ↑ Felder, F., Fr\"ohlich, J. and Keller, G. (1990). On the structure of unitary conformal field theory. II. Representation-theoretic approach. Communications in Mathematical Physics , {\mathbf 130}, 1--49.
- ↑ Fendley, P. (1989). New exactly solvable orbifold models. Journal of Physics A , {\mathbf 22}, 4633--4642.
- ↑ Fendley, P. and Ginsparg, P. (1989). Non-critical orbifolds. Nuclear Physics B , {\mathbf 324}, 549--580.
- ↑ Fenn, R. and Rourke, C. (1979). On Kirby's calculus of links. Topology , {\mathbf 18}, 1--15.
- ↑ Fidaleo, F. and Isola, T. (preprint 1996). The canonical endomorphism for infinite index inclusions.
- ↑ Fredenhagen, K. (1994). Superselection sectors with infinite statistical dimension. in {\em Subfactors --- Proceedings of the Taniguchi Symposium, Katata ---}, (ed. H. Araki, et al.), World Scientific, 242--258.
- ↑ Fredenhagen, K. and J\"or\ss, M. (1996). Conformal Haag-Kastler nets, pointlike localized fields and the existence of operator product expansion. Communications in Mathematical Physics , {\mathbf 176} (1996) 541--554.
- ↑ Fredenhagen, K., Rehren, K.-H. and Schroer, B. (1989). Superselection sectors with braid group statistics and exchange algebras. Communications in Mathematical Physics , {\mathbf 125}, 201--226.
- ↑ Fredenhagen, K., Rehren, K.-H. and Schroer, B. (1992). Superselection sectors with braid group statistics and exchange algebras II. Reviews in Mathematical Physics (special issue), 113--157.
- ↑ Freyd, P., Yetter, D.; Hoste, J.; Lickorish, W., Millet, K.; and Ocneanu, A. (1985). A new polynomial invariant of knots and links. Bulletin of the American Mathematical Society , {\mathbf 12}, 239--246.
- ↑ Friedan, D., Qui, Z. and Shenker, S. (1984). Conformal invariance, unitarity and critical exponents in two dimensions. Physical Review Letters , {\mathbf 52}, 1575--1578.
- ↑ Fr\"ohlich, J. (1987). Statistics of fields, the Yang--Baxter equation and the theroy of knots and links. Proceedings of Carg\`ese, ed. G.'t Hooft et al .
- ↑ Fr\"ohlich, J. (1988). The Statistics of Fields, the Yang--Baxter Equation, and the Theory of Knots and Links. In Non-Pert. Quantum Field Theory, G. 'tHooft et al. (ed.), Plenum. (Cargese Lectures, 1987).
- ↑ Fr\"ohlich, J. and Gabbiani, F. (1990). Braid statistics in local quantum theory. Reviews in Mathematical Physics , {\mathbf 2}, 251--353.
- ↑ Fr\"ohlich, J. and Kerler, T. (1993). Quantum groups, quantum categories and quantum field theory. Lecture Notes in Mathematics, {\mathbf 1542}, Springer.
- ↑ Fr\"ohlich, J. and King, C. (1989). The Chern--Simons theory and knot polynomials. Communications in Mathematical Physics , {\mathbf 126}, 167--199.
- ↑ Fr\"ohlich, J. and King, C. (1989). Two-dimensional conformal field theory and three-dimensional topology. International Journal of Modern Physics A , {\mathbf 4}, 5321--5399.
- ↑ Fr\"ohlich, J. and Marchetti, P.-A. (1988). Quantum field theory of anyons. Letters in Mathematical Physics , {\mathbf 16}, 347--358.
- ↑ Fr\"ohlich, J. and Marchetti, P.-A. (1989). Quantum field theories of vortices and anyons. Communications in Mathematical Physics , {\mathbf 121}, 177--223.
- ↑ Fuchs, J. (1992). Affine Lie algebras and quantum groups. Cambridge University Press .
- ↑ Fuchs, J., Runkel, I. and Schweigert, C. (2002). TFT construction of RCFT correlators I: Partition functions. Nuclear Physics B , {\mathbf 646}, 353--497. hep-th/0204148.
- ↑ Fuchs, J. and Schweigert, C. (2000). Solitonic sectors, alpha-induction and symmetry breaking boundaries. Physics Letters , {\mathbf B490}, 163--172. hep-th/0006181.
- ↑ Fuchs, J. and Schweigert, C. (preprint 2001). Category theory for conformal boundary conditions. math.CT/0106050.
- ↑ Gabbiani, F. and Fr\"ohlich, J. (1993). Operator algebras and conformal field theory. Communications in Mathematical Physics , {\mathbf 155}, 569--640.
- ↑ Gannon, T. (1993). WZW commutants, lattices and level -- one partition functions. Nuclear Physics B , {\mathbf 396}, 708--736.
- ↑ Gannon, T. (1994). The classification of affine modular invariant partition functions. Communications in Mathematical Physics , {\mathbf 161}, 233--264.
- ↑ Gannon, T. and Ho-Kim, Q. (1994). The rank-four heterotic modular invariant partition functions. Nuclear Physics B , {\mathbf 425}, 319--342.
- ↑ Gantmacher, F. R. (1960). The theory of matrices. Vol. 2. Chelsea.
- ↑ Ge, L. and Popa, S. (1998). On some decomposition properties for factors of type II. Duke Mathematical Journal , {\mathbf 94}, 79--101.
- ↑ Gepner, D. and Witten, E. (1986). String theory on group manifolds. Nuclear Physics B , {\mathbf 278}, 493--549.
- ↑ Gnerre, S. (2000). Free compositions of paragroups. Journal of Functional Analysis , {\mathbf 175}, 251--278.
- ↑ Goddard, P., Kent, A. and Olive, D. (1986). Unitary representations of the Virasoro and super-Virasoro algebras. Communications in Mathematical Physics , {\mathbf 103}, 105--119.
- ↑ Goddard, P., Nahm, W. and Olive, D. (1985). Symmetric spaces, Sugawara's energy momentum tensor in two dimensions and free Fermions. Physics Letters , {\mathbf 160B}, 111--116.
- ↑ Goddard, P. and Olive, D. (1988). Kac--Moody and Virasoro algebras. Advanced Series in Mathematical Physics , {\mathbf 3}, World Scientific.
- ↑ Goldman, M. (1960). On subfactors of type II. The Michigan Mathematical Journal , {\mathbf 7}, 167--172.
- ↑ Goldschmidt, D. M. and Jones, V. F. R. (1989) Metaplectic link invariants. Geometriae Dedicata , {\mathbf 31}, 165--191.
- ↑ Goodman, F., de la Harpe, P. and Jones, V. F. R. (1989). Coxeter graphs and towers of algebras. MSRI Publications (Springer) , {\mathbf 14}.
- ↑ Goodman, F. and Wenzl, H. (1990). Littlewood Richardson coefficients for Hecke algebras at roots of unity. Advances in Mathematics , {\mathbf 82}, 244--265.
- ↑ Goto, S. (1994). Orbifold construction for non-AFD subfactors. International Journal of Mathematics , {\mathbf 5}, 725--746.
- ↑ Goto, S. (1995). Symmetric flat connections, triviality of Loi's invariant, and orbifold subfactors. Publications of the RIMS, Kyoto University , {\mathbf 31}, 609--624.
- ↑ Goto, S. (1996). Commutativity of automorphisms of subfactors modulo inner automorphisms. Proceedings of the American Mathematical Society , {\mathbf 124}, 3391--3398.
- ↑ Goto, S. (2000). Quantum double construction for subfactors arising from periodic commuting squares. Journal of the Mathematical Society of Japan , {\mathbf 52}, 187--198.
- ↑ Greenleaf, F. P. (1969). Invariant means on topological groups and their applications , van Nostrand, New York.
- ↑ Grossman, P. (preprint 2006). Forked Temperley-Lieb algebras and intermediate subfactors. math.OA/0607335.
- ↑ Grossman, P., and Izumi, M. (2008). Classification of noncommuting quadrilaterals of factors. International Journal of Mathematics , {\mathbf 19}, 557--643. arXiv:0704.1121.
- ↑ Grossman, P. and Jones, V. F. R. (2007). Intermediate subfactors with no extra structure. Journal of the American Mathematical Society , {\mathbf 20}, 219--265. math.OA/0412423.
- ↑ Guido, D. and Longo, R. (1992). Relativistic invariance and charge conjugation in quantum field theory. Communications in Mathematical Physics , {\mathbf 148}, 521---551.
- ↑ Guido, D. and Longo, R. (1995). An algebraic spin and statistics theorem. Communications in Mathematical Physics , {\mathbf 172}, 517--533.
- ↑ Guido, D. and Longo, R. (1996). The conformal spin and statistics theorem. Communications in Mathematical Physics , {\mathbf 181}, 11--35.
- ↑ Guido, D. and Longo, R. (in press). A converse Hawking-Unruh effect and dS/CFT correspondance. Annales Henri Poincar\'e . gr-qc/0212025.
- ↑ Guido, D., Longo, R. and Wiesbrock, H.-W. (1998). Extensions of conformal nets and superselection structures. Communications in Mathematical Physics , {\mathbf 192}, 217--244.
- ↑ Guido, D., Longo, R., Roberts, J. E. and Verch, R. (2001). Charged sectors, spin and statistics in quantum field theory on curved spacetimes. Reviews in Mathematical Physics , {\mathbf 13}, 125--198.
- ↑ Guionnet, A., Jones, V. F. R., Shlyakhtenko, D. (preprint 2007). Random matrices, free probability, planar algebras and subfactors. arXiv:0712.2904.
- ↑ Haag, R. (1996). Local Quantum Physics. Springer-Verlag, Berlin-Heidelberg-New York.
- ↑ Haag, R and Kastler, T. (1964). An algebraic approach to quantum field theory. Journal of Mathematical Physics , {\mathbf 5}, 848--861.
- ↑ Haagerup, U. (1975). Normal weights on -algebras. Journal of Functional Analysis , {\mathbf 19}, 302--317.
- ↑ Haagerup, U. (1983). All nuclear -algebras are amenable. Inventiones Mathematica , {\mathbf 74}, 305--319.
- ↑ Haagerup, U. (1987). Connes' bicentralizer problem and the uniqueness of the injective factor of type . Acta Mathematica , {\mathbf 158}, 95--148.
- ↑ Haagerup, U. (preprint 1991). Quasi-traces on exact --algebras are traces.
- ↑ Haagerup, U. (1994). Principal graphs of subfactors in the index range . in Subfactors -Proceedings of the Taniguchi Symposium, Katata - , (ed. H. Araki, et al.), World Scientific, 1--38.
- ↑ Haagerup, U. and St\"ormer, E. (1990). Equivalences of normal states on von Neumann algebras and the flow of weights. Advances in Mathematics {\mathbf 83}, 180--262.
- ↑ Haagerup, U. and St\"ormer, E. (1990). Pointwise inner automorphisms of von Neumann algebras (with an appendix by Sutherland, C. E.). Journal of Functional Analysis , {\mathbf 92}, 177--201.
- ↑ Haagerup, U. and Winsl\"ow, C. (1998). The Effros--Mar\'echal topology in the space of von Neumann algebras. American Journal of Mathematics , {\mathbf 120}, 567--617.
- ↑ Haagerup, U. and Winsl\"ow, C. (2000). The Effros--Mar\'echal topology in the space of von Neumann algebras, II. Journal of Functional Analysis , {\mathbf 171}, 401--431.
- ↑ Hamachi, T. and Kosaki, H. (1988). Index and flow of weights of factors of type III. Proceedings of the Japan Academy , {\mathbf 64A}, 11--13.
- ↑ Hamachi, T. and Kosaki, H. (1988). Inclusions of type III factors constructed from ergodic flows. Proceedings of the Japan Academy , {\mathbf 64A}, 195--197.
- ↑ Hamachi, T. and Kosaki, H. (1993). Orbital factor map. Ergodic Theory and Dynamical Systems , {\mathbf 13}, 515--532.
- ↑ de la Harpe, P. (1979). Moyennabilit\'e du groupe unitaire et propri\'et\'e P de Schwartz des alg\`ebres de von Neumann. {\em Alg\`ebres d'op\'erateurs (S\'eminaire, Les Plans-sur-Bex, Suisse 1978) (editor, P. de la Harpe), Lecture Notes in Mathematics, Springer-Verlag}, {\mathbf 725}, 220--227.
- ↑ de la Harpe, P. and Wenzl, H. (1987). Operations sur les rayons spectraux de matrices symetriques entieres positives. {\em Comptes Rendus de l'Academie des Sciences, S\'erie I, Math\'ematiques}, {\mathbf 305}, 733--736.
- ↑ Havet, J.-F. (1976). Esp\'erance conditionnelles permutables \`a un group d'automorphismes sur une alg\`ebre de von Neumann. Comptes Rendus de l'Academie des Sciences, S\'erie I, Math\'ematiques , {\mathbf 282} (1976), 1095--1098..
- ↑ Havet, J.-F. (1990). Esp\'erance conditionnelle minimale. Journal of Operator Theory , {\mathbf 24}, 33--35.
- ↑ Hayashi, T. (1993). Quantum group symmetry of partition functions of IRF models and its application to Jones' index theory. Communications in Mathematical Physics , {\mathbf 157}, 331--345.
- ↑ Hayashi, T. (1996). Compact quantum groups of face type. Publications of the RIMS, Kyoto University , {\mathbf 32}, 351--369.
- ↑ Hayashi, T. (1998). Faes algebras I. A generalization of quantum group theory. Journal of the Mathematical Society of Japan , {\mathbf 50}, 293--315.
- ↑ Hayashi, T. (1999). Face algebras and unitarity of SU-TQFT. Communications in Mathematical Physics , {\mathbf 203}, 211-247.
- ↑ Hayashi, T. (1999). Galois quantum groups of II-subfactors. T\^ohoku Mathematical Journal , {\mathbf 51}, 365--389.
- ↑ Hayashi, T. (2000). Harmonic function spaces of probability measures on fusion algebras. Publications of the RIMS, Kyoto University , {\mathbf 36}, 231--252.
- ↑ Hayashi, T. and Yamagami, S. (2000). Amenable tensor categories and their realizations as AFD bimodules. Journal of Functional Analysis , {\mathbf 172}, 19--75.
- ↑ Herman, R. H. and Ocneanu, A. (1984). Stability for integer actions on UHF -algebras. Journal of Functional Analysis , {\mathbf 59}, 132--144.
- ↑ Hiai, F. (1988). Minimizing indices of conditional expectations onto a subfactor. Publications of the RIMS, Kyoto University , {\mathbf 24}, 673--678.
- ↑ Hiai, F. (1990). Minimum index for subfactors and entropy I. Journal of Operator Theory , {\mathbf 24}, 301--336.
- ↑ Hiai, F. (1991). Minimum index for subfactors and entropy, II. Journal of the Mathematical Society of Japan , {\mathbf 43}, 347--380.
- ↑ Hiai, F. (1994). Entropy and growth for derived towers of subfactors. in {\em Subfactors --- Proceedings of the Taniguchi Symposium, Katata ---}, (ed. H. Araki, et al.), World Scientific, 206--232.
- ↑ Hiai, F. (1995). Entropy for canonical shifts and strong amenability. International Journal of Mathematics , {\mathbf 6}, 381--396.
- ↑ Hiai, F. (1997). Standard invariants for crossed products inclusions of factors. Pacific Journal of Mathematics , {\mathbf 177}, 237--267.
- ↑ Hiai, F. and Izumi, M. (1998). Amenability and strong amenability for fusion algebras with applications to subfactor theory. International Journal of Mathematics , {\mathbf 9}, 669--722.
- ↑ Hislop, P. and Longo, R. (1982). Modular structure of the local algebras associated with the free massless scalar field theory. Communications in Mathematical Physics , {\mathbf 84} (1982) 71--85.
- ↑ Hofman, A. J. (1972). On limit points of spectral radii of non-negative symmetric integral matrices. Lecture Notes in Mathematics , {\mathbf 303}, Springer Verlag, 165--172.
- ↑ Ikeda, K. (1998). Numerical evidence for flatness of Haagerup's connections. Journal of the Mathematical Sciences, University of Tokyo , {\mathbf 5}, 257--272.
- ↑ Ishikawa, H. and Tani, T. (preprint 2002). Novel construction of boundary states in coset conformal field theories. hep-th/0207177.
- ↑ Izumi, M. (1991). Application of fusion rules to classification of subfactors. Publications of the RIMS, Kyoto University , {\mathbf 27}, 953--994.
- ↑ Izumi, M. (1992). Goldman's type theorem for index 3. Publications of the RIMS, Kyoto University , {\mathbf 28}, 833--843.
- ↑ Izumi, M. (1993). On type III and type II principal graphs for subfactors. Mathematica Scandinavica , {\mathbf 73}, 307--319.
- ↑ Izumi, M. (1993). Subalgebras of infinite -algebras with finite Watatani indices I. Cuntz algebras. Communications in Mathematical Physics , {\mathbf 155}, 157--182.
- ↑ Izumi, M. (1994). On flatness of the Coxeter graph . Pacific Journal of Mathematics , {\mathbf 166}, 305--327.
- ↑ Izumi, M. (1994). Canonical extension of endomorphisms of factors. in Subfactors --- Proceedings of the Taniguchi Symposium, Katata --- , (ed. H. Araki, et al.), World Scientific, 274--293.
- ↑ Izumi, M. (1998). Subalgebras of infinite -algebras with finite Watatani indices II: Cuntz-Krieger algebras. Duke Mathematical Journal , {\mathbf 91}, 409--461.
- ↑ Izumi, M. (1999). Actions of compact quantum groups on operator algebras. in XIIth International Congress of Mathematical Physics , International Press, 249--253.
- ↑ Izumi, M. (2000). The structure of sectors associated with Longo-Rehren inclusions I. General theory. Communications in Mathematical Physics , {\mathbf 213}, 127--179.
- ↑ Izumi, M. (2001). The structure of sectors associated with Longo-Rehren inclusions II. Examples. Reviews in Mathematical Physics , {\mathbf 13}, 603--674.
- ↑ Izumi, M. (2002). Non-commutative Markov operators arising from subfactors. Advances in Mathematics , {\mathbf 169}, 1--57.
- ↑ Izumi, M. (2003). Canonical extension of endomorphisms of type III factors. American Journal of Mathematics , {\mathbf 125}, 1--56.
- ↑ Izumi, M. (2002). Inclusions of simple -algebras. Journal f\"ur die Reine und Angewandte Mathematik , {\mathbf 547}, 97--138.
- ↑ Izumi, M. (2002). Characterization of isomorphic group-subgroup subfactors. International Mathematics Research Notices , 1791--1803.
- ↑ Izumi, M. and Kawahigashi, Y. (1993). Classification of subfactors with the principal graph . Journal of Functional Analysis , {\mathbf 112}, 257--286.
- ↑ Izumi, M. and Kosaki, H. (1996). Finite dimensional Kac algebras arising from certain group actions on a factor. International Mathematics Research Notices , 357--370.
- ↑ Izumi, M. and Kosaki, H. (2002). Kac algebras arising from composition of subfactors: General theory and classification. Memoirs of the American Mathematical Society , {\mathbf 158}, no. 750.
- ↑ Izumi, M. and Kosaki, H. (2002). On a subfactor analogue of the second cohomology. Reviews in Mathematical Physics , {\mathbf 14}, 733--757.
- ↑ Izumi, M., Longo, R. and Popa, S. (1998). A Galois correspondence for compact groups of automorphisms of von Neumann algebras with a generalization to Kac algebras. Journal of Functional Analysis , {\mathbf 155}, 25--63.
- ↑ Jimbo, M. (1986). A -difference analogue of and the Yang-Baxter equation. Letters in Mathematical Physics , {\mathbf 102}, 537--567.
- ↑ Jimbo, M. (1986). A -analogue of , Hecke algebra and the Yang-Baxter equation. Letters in Mathematical Physics , {\mathbf 11}, 247--252.
- ↑ Jimbo, M., T, Miwa and Okado, M. (1987). Solvable lattice models whose states are dominant integral weights of . Letters in Mathematical Physics , {\mathbf 14}, 123--131.
- ↑ Jimbo, M., T, Miwa and Okado, M. (1988). Solvable lattice models related to the vector representation of classical simple Lie algebras. Communications in Mathematical Physics , {\mathbf 116}, 507--525.
- ↑ Jones, V. F. R. (1980). A factor anti-isomorphic to itself but without involutory anti-automorphisms. Mathematica Scandinavica , {\mathbf 46}, 103--117.
- ↑ Jones, V. F. R. (1980). Actions of finite groups on the hyperfinite type II factor. Memoirs of the American Mathematical Society , {\mathbf 237}.
- ↑ Jones, V. F. R. (1983). Index for subfactors. Inventiones Mathematicae , {\mathbf 72}, 1--25.
- ↑ Jones, V. F. R. (1985). A polynomial invariant for knots via von Neumann algebras. Bulletin of the American Mathematical Society , {\mathbf 12}, 103--112.
- ↑ Jones, V. F. R. (1986). A new knot polynomial and von Neumann algebras. Notices of the American Mathematical Society , {\mathbf 33}, 219--225.
- ↑ Jones, V. F. R. (1986). Braid groups, Hecke algebras and type II factors. (1986). in {\em Geometric Methods in Operator Algebras}, ed. H. Araki and E. G. Effros., Longman, 242--273.
- ↑ Jones, V. F. R. (1987). Hecke algebra representations of braid groups and link polynomials. Annals of Mathematics , {\mathbf 126}, 335--388.
- ↑ Jones, V. F. R. (1989). On a certain value of the Kauffman polynomial. Communications in Mathematical Physics , {\mathbf 125}, 459--467.
- ↑ Jones, V. F. R. (1989). On knot invariants related to some statistical mechanical models. Pacific Journal of Mathematics , {\mathbf 137}, 311--334.
- ↑ Jones, V. F. R. (1990). Knots, braids and statistical mechanics. in Advances in differential geometry and topology , 149--184.
- ↑ Jones, V. F. R. (1990). Baxterization. International Journal of Modern Physics B , {\mathbf 4}, 701--713.
- ↑ Jones, V. F. R. (1990). Notes on subfactors and statistical mechanics. International Journal of Modern Physics A , {\mathbf 5}, 441--460.
- ↑ Jones, V. F. R. (1991). von Neumann algebras in mathematics and physics. Proceedings of ICM-90 , 121--138, Springer.
- ↑ Jones, V. F. R. (1991). Subfactors and knots. CBMS Regional Conference Series in Mathematics, {\mathbf 80}.
- ↑ Jones, V. F. R. (1992). From quantum theory to knot theory and back: a von Neumann algebra excursion. in American Mathematical Society centennial publications, Vol. II , 321--336.
- ↑ Jones, V. F. R. (1994). The Potts model and the symmetric group. in {\em Subfactors --- Proceedings of the Taniguchi Symposium, Katata ---}, (ed. H. Araki, et al.), World Scientific, 259--267.
- ↑ Jones, V. F. R. (1994). On a family of almost commuting endomorphisms. Journal of Functional Analysis , {\mathbf 119}, 84--90.
- ↑ Jones, V. F. R. (1995). Fusion en alg\`ebres de von Neumann et groupes de lacets (d'apr\`es A. Wassermann). Seminaire Bourbaki , {\mathbf 800}, 1--20.
- ↑ Jones, V. F. R. (in press). Planar algebras I. New Zealand Journal of Mathematics . math.QA/9909027.
- ↑ Jones, V. F. R. (2000). Ten problems. in Mathematics: frontiers and perspectives , Amer. Math. Soc., 79--91.
- ↑ Jones, V. F. R. (2000). The planar algebras of a bipartite graph. in Knots in Hellas '98 , World Scientific, 94--117.
- ↑ Jones, V. F. R. (2001). The annular structure of subfactors. in Essays on geometry and related topics , Monographies de L'Enseignement Mathe\'matique, {\mathbf 38}, 401--463.
- ↑ Jones, V. F. R. (preprint 2003). In and around the origin of quantum groups. math.OA/0309199.
- ↑ Jones, V. F. R. (preprint 2003). Quadratic tangles in planar algebras.
- ↑ Jones, V. F. R. and Sunder, V. S. (1997). Introduction to subfactors. London Math. Soc. Lecture Notes Series {\mathbf 234}, Cambridge University Press.
- ↑ Jones, V. F. R. and Takesaki, M. (1984). Actions of compact abelian groups on semifinite injective factors. Acta Mathematica , {\mathbf 153}, 213--258.
- ↑ Jones, V. F. R. and Wassermann, A. (in preparation). Fermions on the circle and representations of loop groups.
- ↑ Jones, V. F. R. and Xu, F. (2004). Intersections of finite families of finite index subfactors. International Journal of Mathematics , {\mathbf 15}, 717--733. math.OA/0406331.
- ↑ Kac, V. (1990). Infinite dimensional Lie algebras. 3\`eme \'edition, Cambridge University Press .
- ↑ Kac, V., Longo, R. and Xu, F. (2004). Solitons in affine and permutation orbifolds. Communications in Mathematical Physics , {\mathbf 253}, 723--764. math.OA/0312512.
- ↑ Ka\v c, V. and Petersen, D. H. (1984). Infinite dimensional Lie algebras, theta functions, and modular forms. Advances in Mathematics , {\mathbf 53}, 125--264.
- ↑ Ka\v c, V. and Raina, A. K. (1987). Highest weight representations of infinite dimensional Lie algebras. World Scientific.
- ↑ Kadison, R. V. and Ringrose, J. R. (1983). Fundamentals of the Theory of Operator Algebras Vol I. Academic Press.
- ↑ Kadison, R. V. and Ringrose, J. R. (1986). Fundamentals of the Theory of Operator Algebras Vol II. Academic Press.
- ↑ Kajiwara, T., Pinzari, C., and Watatani, Y. (2004). Jones index theory for Hilbert -bimodules and its equivalence with conjugation theory. Journal of Functional Analysis , {\mathbf 215}, 1--49. math.OA/0301259
- ↑ Kallman, R. R. (1971). Groups of inner automorphisms of von Neumann algebras. Journal of Functional Analysis , {\mathbf 7}, 43--60.
- ↑ Karowski, M. (1987). Conformal quantum field theories and integrable theories. {\em Proceedings of the Brasov Summer School, September 1987, ed. P. Dita et al., Academic Press}.
- ↑ Karowski, M. (1988). Finite size corrections for integrable systems and conformal properties of six-vertex models. Nuclear Physics B , {\mathbf 300}, 473--499.
- ↑ Kastler D. (1990). (editor) The algebraic theory of Superselection sectors. Introduction and recent results. World Scientific, Singapore .
- ↑ Kato, A. (1987). Classification of modular invariant partition functions in two dimensions. Modern Physics Letters A , {\mathbf 2}, 585--600.
- ↑ Kauffman, L. H. (1986). Chromatic polynomial, Potts model, Jones polynomial Lecture notes .
- ↑ Kauffman, L. (1987). State models and the Jones polynomial. Topology , {\mathbf 26}, 395--407.
- ↑ Kauffman, L. (1990). An invariant of regular isotopy. Transactions of the American Mathematical Society , {\mathbf 318}, 417--471.
- ↑ Kauffman, L. (1991). Knots and Physics . World Scientific, Singapore.
- ↑ Kauffman, L. and Lins, S. L. (1994). Temperley--Lieb recoupling theory and invariants of -manifolds . Princeton University Press, Princeton.
- ↑ Kawahigashi, Y. (1992). Automorphisms commuting with a conditional expectation onto a subfactor with finite index. Journal of Operator Theory , {\mathbf 28}, 127--145.
- ↑ Kawahigashi, Y. (1992). Exactly solvable orbifold models and subfactors. Functional Analysis and Related Topics , Lecture Notes in Mathematics, Springer, {\mathbf 1540}, 127--147.
- ↑ Kawahigashi, Y. (1993). Centrally trivial automorphisms and an analogue of Connes's for subfactors. Duke Mathematical Journal , {\mathbf 71}, 93--118.
- ↑ Kawahigashi, Y. (1994). Paragroup and their actions on subfactors. in {\em Subfactors --- Proceedings of the Taniguchi Symposium, Katata ---}, (ed. H. Araki, et al.), World Scientific, 64--84.
- ↑ Kawahigashi, Y. (1995). On flatness of Ocneanu's connections on the Dynkin diagrams and classification of subfactors. Journal of Functional Analysis , {\mathbf 127}, 63--107.
- ↑ Kawahigashi, Y. (1995). Orbifold subfactors, central sequences and the relative Jones invariant . International Mathematical Research Notices , 129--140.
- ↑ Kawahigashi, Y. (1995). Classification of paragroup actions on subfactors. Publications of the RIMS, Kyoto University , {\mathbf 31}, 481--517.
- ↑ Kawahigashi, Y. (1996). Paragroups as quantized Galois groups of subfactors. Sugaku Expositions , {\mathbf 9}, 21--35.
- ↑ Kawahigashi, Y. (1997). Classification of approximately inner automorphisms of subfactors. Mathematische Annalen , {\mathbf 308}, 425--438.
- ↑ Kawahigashi, Y. (1997). Quantum doubles and orbifold subfactors. in Operator Algebras and Quantum Field Theory (ed. S. Doplicher, et al.), International Press, 271--283.
- ↑ Kawahigashi, Y. (1998). Subfactors and paragroup theory. in Operator Algebras and Operator Theory (ed. L. Ge, et al.), Contemporary Mathematics , {\mathbf 228}, 179--188.
- ↑ Kawahigashi, Y. (1999). Quantum Galois correspondence for subfactors. Journal of Functional Analysis , {\mathbf 167}, 481--497.
- ↑ Kawahigashi, Y. (2004). Braiding and nets of factors on the circle. in Operator Algebras and Applications (ed. H. Kosaki), Advanced Studies in Pure Mathematics {\mathbf 38}, 219--228.
- ↑ Kawahigashi, Y. (2001). Braiding and extensions of endomorphisms of subfactors. in Mathematical Physics in Mathematics and Physics (ed. R. Longo), The Fields Institute Communications {\mathbf 30}, Providence, Rhode Island: AMS Publications, 261--269.
- ↑ Kawahigashi, Y. (2002). Generalized Longo-Rehren subfactors and -induction. Communications in Mathematical Physics , {\mathbf 226}, 269--287. math.OA/0107127.
- ↑ Kawahigashi, Y. (2003). Conformal quantum field theory and subfactors. Acta Mathematica Sinica , {\mathbf 19}, 557--566.
- ↑ Kawahigashi, Y. (2003). Classification of operator algebraic conformal field theories. "Advances in Quantum Dynamics", Contemporary Mathematics , {\mathbf 335}, 183--193. math.OA/0211141.
- ↑ Kawahigashi, Y. (2005). Subfactor theory and its applications --- operator algebras and quantum field theory ---. "Selected Papers on Differential Equations" , Amer. Math. Soc. Transl. {\mathbf 215}, Amer. Math. Soc., 97--108.
- ↑ Kawahigashi, Y. (2005). Topological quantum field theories and operator algebras. Quantum Field Theory and Noncommutative Geometry , Lecture Notes in Physics, Springer, {\mathbf 662}, 241--253. math.OA/0306112.
- ↑ Kawahigashi, Y. (2005). Classification of operator algebraic conformal field theories in dimensions one and two. XIVth International Congress on Mathematical Physics , World Scientific, 476--485. math-ph/0308029.
- ↑ Kawahigashi, Y. (preprint 2007). Conformal field theory and operator algebras. arXiv:0704.0097.
- ↑ Kawahigashi, Y. (preprint 2007). Superconformal field theory and operator algebras.
- ↑ Kawahigashi, Y. and Longo, R. (2004). Classification of Local Conformal Nets. Case . Annals of Mathematics , {\mathbf 160}, 493--522. math-ph/0201015.
- ↑ Kawahigashi, Y. and Longo, R. (2004). Classification of two-dimensional local conformal nets with and 2-cohomology vanishing for tensor categories. Communications in Mathematical Physics , {\mathbf 244}, 63--97. math-ph/0304022.
- ↑ Kawahigashi, Y. and Longo, R. (2005).Noncommutative spectral invariants and black hole entropy. Communications in Mathematical Physics , {\mathbf 257}, 193--225. math-ph/0405037.
- ↑ Kawahigashi, Y. and Longo, R. (2006). Local conformal nets arising from framed vertex operator algebras. Advances in Mathematics , {\mathbf 206}, 729--751. math.OA/0407263.
- ↑ Kawahigashi, Y., Longo, R. and M\"uger, M. (2001). Multi-interval subfactors and modularity of representations in conformal field theory. Communications in Mathematical Physics , {\mathbf 219}, 631--669. math.OA/9903104.
- ↑ Kawahigashi, Y., Longo, R., Pennig, U. and Rehren, K.-H. (2007). The classification of non-local chiral CFT with . Communications in Mathematical Physics , {\mathbf 271}, 375--385. math.OA/0505130.