Open Quantum Systems/The Density Matrix
Resource type: this resource contains a lecture or lecture notes. |
Open vs. closed quantum systems[edit | edit source]
The state of a closed quantum system, is described by a unit vector in a Hilbert space. Observables are represented by Hermitian operators, whose expectation values can be computed according to the inner product . The Hilbert state for quantum systems consisting of many particles is given by the tensor product of the single particle Hilbert spaces.
If we want to talk about open quantum systems, we are thinking about situation where we are only interested in the properties of a certain subsystem and treat the rest of the total quantum system as "the environment", i.e., a big black box. However, due to the interaction between the subsystem of interest and its environment, the quantum state of the subsystem can in general no longer be described by a vector in a Hilbert space. This can be seen from the following example of an entangled state of two particles represented by two-level systems
Suppose we are interested in the first particle only. Then, since the Pauli matrices , and the identity form a basis for the vector space of hermitian matrices, we can expand any observable as
- .
Remarkably, we find that for any choice of , with the constant value being a direct consequence of the normalization of the quantum state. In other words, no measurement on the first particle alone can reveal any information about the quantum state. This is certainly at odds with a description in terms of a Hilbert space vector, where we can always construct Hermitian operators, to which the state is an eigenvector.
Statistical ensembles[edit | edit source]
The most straight-forward way to describe the state of an open quantum system is to use a statistical sum (mixture) of Hilbert space vectors, giving rise to a density matrix of the form
where denotes the probability to find the system in the (pure) quantum state described by the Hilbert space vector . Being probabilities, they are subject to the constraint , resulting in while the non-existence of negative probabilities requires the density matrix to be positive-semidefinite.
Such a statistical mixture might reflect our ignorance about preparation of a quantum state, i.e., it might be pure, but we don't know which one. Or, it might also describe something more fundamental: if we have an entangled state of two subsystems, the density matrix describes the information that is in principle accessible from local measurements alone. So, how do we get from a pure state of the total system to a density operator of a subsystem? Consider a bipartite system composed of the subsystems and , with pure states being represented by
Then, we can define the reduced density matrix of as the partial trace over , given by
For the pure state , we obtain
Taking the example of the entangled state from above, we obtain for the reduced density matrix of the first particle
Since this state is just a completely random mixture of the pure states and . This, of course, is a direct manifestation of the fact that quantum entanglement is a nonlocal property, and therefore such a (maximally) entangled quantum state does not provide any useful information under local measurements.
As the state of the quantum system is no longer described by a Hilbert space vector, the dynamics is no longer described by the Schrödinger equation, even when ignoring the interaction with the environment. Instead, we have
which is called the Liouville-von Neumann equation. Note that this equation is analogous to the Liouville for the classical phase space density, where the commutator is replaced by Poisson brackets.
Von Neumann entropy[edit | edit source]
A very useful way to quantify the (lack of) information that can be extracted from measurements of a quantum system, is given by its von Neumann entropy, which is defined as
The last equality shows that the von Neumann entropy is equivalent to the Shannon (or Gibbs) entropy used in statistical mechanics. Specifically, the entropy is maximal for the state where all probabilities are identical (the "maximally mixed state"),
where is the total Hilbert space dimension. The von Neumann entropy non-negative (it is zero if and only if is pure) and it is invariant under unitary transformations and therefore does not change under Hamiltonian dynamics. Additionally, it is subadditive with respect to its subsystems, i.e.,
where and are the density matrices of the individual subsystems and ^{[1]}. Consequently, by looking only at parts of the full system, we can only obtain partial information, as seen in the example above. Remarkably, for pure states of the full system, the entropies and are identical. This can be seen by looking at the Schmidt decomposition ^{[2]} of the wave function of the full system,
which results in the reduced density matrices
As the coefficients are identical for both subsystems, the reduced density matrices have the same nonzero eigenvalues and therefore the same entropy. Therefore, we can define an "entanglement entropy" for any pure state simply as the entropy of the reduced density matrix . For initially mixed states, however, such an obvious measure of entanglement does not exist and the situation is much more subtle.
References[edit | edit source]
- ↑ Araki, Huzihiro; Elliott H. Lieb (1970). "Entropy inequalities". Communications in Mathematical Physics (1965-1997) 18 (2): 160-170. ISSN 1432-0916 0010-3616, 1432-0916. http://projecteuclid.org/euclid.cmp/1103842506. Retrieved 2013-05-02.
- ↑ Nielsen, Michael A; Chuang, Isaac L (2010). Quantum computation and quantum information. Cambridge, UK: Cambridge University Press. ISBN 9781107002173.