Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main Page
Browse
Recent changes
Guided tours
Random
Help
Community
Portal
Colloquium
News
Projects
Sandbox
Search
Search
Appearance
Donate
Create account
Log in
Personal tools
Donate
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Normal subgroup/Characterization/Fact
1 language
Deutsch
Edit links
Resource
Discuss
English
Read
Edit
Edit source
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
Edit source
View history
General
What links here
Related changes
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikimedia Projects
Commons
Wikibooks
Wikidata
Wikinews
Wikipedia
Wikiquote
Wikisource
Wikispecies
Wikivoyage
Wiktionary
Meta-Wiki
Outreach
MediaWiki
Wikimania
Print/export
Create a book
Download as PDF
Printable version
In other projects
Wikidata item
Appearance
move to sidebar
hide
From Wikiversity
Let
G
{\displaystyle {}G}
be a
group
, and let
H
⊆
G
{\displaystyle {}H\subseteq G}
be a
subgroup
.
Then the following statements are equivalent.
H
{\displaystyle {}H}
is a normal subgroup of
G
{\displaystyle {}G}
.
We have
x
h
x
−
1
∈
H
{\displaystyle {}xhx^{-1}\in H}
for all
x
∈
G
{\displaystyle {}x\in G}
and
h
∈
H
{\displaystyle {}h\in H}
.
H
{\displaystyle {}H}
is invariant under every inner automorphism of
G
{\displaystyle {}G}
.
Proof
,
Write another proof
Category
:
Mathematical fact