Jump to content

Nonlinear finite elements/Homework 6/Solutions/Problem 1/Part 9

From Wikiversity

Problem 1: Part 9

[edit | edit source]

Construct a laminar coordinate system at the blue point. (Use equations 9.3.16 and 9.3.17 from the book chapter). Assume that the blue point is at the center of element 5.

The and coordinates of the master and slave nodes are

Since there are two master nodes in an element, the parent element is a four-noded quad with shape functions

The isoparametric map is

Plugging in the numbers, we get

Therefore, the derivatives with respect to are

Since the blue point is at the center of the element, the values of and at that point are zero. Therefore, the values of the derivatives at that point are

Therefore,

The local laminar basis vector is given by

The laminar basis vector is given by

A plot of the vectors is shown in Figure 13.

Figure 13. Laminar base vectors.

The Maple code for this calculation is shown below.

> #
> # Shape functions
> #
> N1m := 1/4*(1-xi)*(1-eta):
> N2m := 1/4*(1+xi)*(1-eta):
> N1p := 1/4*(1-xi)*(1+eta):
> N2p := 1/4*(1+xi)*(1+eta):
> N := linalg[matrix](1,4,[N1m,N2m,N1p,N2p]);
> #
> # Compute local laminar basis vectors at the blue point
> #
> # Isoparametric map
> #
> x := x1m*N1m + x2m*N2m + x1p*N1p + x2p*N2p;
> y := y1m*N1m + y2m*N2m + y1p*N1p + y2p*N2p;
> #
> # Derivative of Isoparametric map
> #
> dx_dxi := diff(x, xi);
> dy_dxi := diff(y, xi);
> #
> # Jacobian evluated at blue point
> #
> dx_dxi_cen := subs(eta=0, dx_dxi);
> dy_dxi_cen := subs(eta=0, dy_dxi);
> #
> # Local laminar basis vectors at the blue point
> #
> norm_dx_dxi_cen := simplify(sqrt(dx_dxi_cen^2 + dy_dxi_cen^2));
> ehat_x := vector([simplify(dx_dxi_cen/norm_dx_dxi_cen),
> simplify(dy_dxi_cen/norm_dx_dxi_cen), 0]);
> ehat_z := vector([0, 0, 1]);
> ehat_y := crossprod(ehat_z, ehat_x);