Nonlinear finite elements/Homework 6/Solutions/Problem 1/Part 12
Appearance
Problem 1: Part 12
[edit | edit source]Rotate the rate of deformation so that its components are with respect to the laminar coordinate system.
The global base vectors are
Therefore, the rotation matrix is
Therefore, the components of the rate of deformation tensor with respect to the laminar coordinate system are
The Maple script used to compute the above is shown below.
> #
> # Compute rate of deformation in laminar system
> #
> # Set up global base vectors
> #
> ex := vector([1,0,0]);
> ey := vector([0,1,0]);
> ez := vector([0,0,1]);
> #
> # Set up rotation matrix
> #
> ex_ehatx := dotprod(ex, ehat_x);
> ex_ehaty := dotprod(ex, ehat_y);
> ex_ehatz := dotprod(ex, ehat_z);
> ey_ehatx := dotprod(ey, ehat_x);
> ey_ehaty := dotprod(ey, ehat_y);
> ey_ehatz := dotprod(ey, ehat_z);
> ez_ehatx := dotprod(ez, ehat_x);
> ez_ehaty := dotprod(ez, ehat_y);
> ez_ehatz := dotprod(ez, ehat_z);
> Rlam := linalg[matrix](2,2,[ex_ehatx, ex_ehaty,
> ey_ehatx, ey_ehaty]);
> RlamT := transpose(Rlam);
> #
> # Compute rate of deformation in laminar system
> #
> Dlam := evalm(RlamT&*DefRate&*Rlam);