Given:
The differential equations governing the bending of straight beams are

Show that the weak forms of these equations can be written as
![{\displaystyle {\begin{aligned}\int _{x_{a}}^{x_{b}}{\cfrac {dv_{1}}{dx}}N_{xx}~dx&=\int _{x_{a}}^{x_{b}}v_{1}f~dx+\left.v_{1}N_{xx}\right|_{x_{a}}^{x_{b}}\\\int _{x_{a}}^{x_{b}}\left[{\cfrac {dv_{2}}{dx}}\left({\cfrac {dw_{0}}{dx}}N_{xx}\right)-{\cfrac {d^{2}v_{2}}{dx^{2}}}M_{xx}\right]~dx&=\int _{x_{a}}^{x_{b}}v_{2}q~dx+\left.v_{2}\left({\cfrac {dw_{0}}{dx}}N_{xx}+{\cfrac {dM_{xx}}{dx}}\right)\right|_{x_{a}}^{x_{b}}-\left.{\cfrac {dv_{2}}{dx}}M_{xx}\right|_{x_{a}}^{x_{b}}\end{aligned}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/68ae5be719ed1c123748a3c5cdd6c379043c696b)
First we get rid of the shear force term by combining the second and third equations to get

Let
be the weighting function for equation (1) and let
be the weighting function for equation (2).
Then the weak forms of the two equations are
![{\displaystyle {\begin{aligned}\int _{x_{a}}^{x_{b}}v_{1}\left({\cfrac {dN_{xx}}{dx}}+f(x)\right)~dx&=0{\text{(3)}}\qquad \\\int _{x_{a}}^{x_{b}}v_{2}\left[{\cfrac {d^{2}M_{xx}}{dx^{2}}}+q(x)+{\cfrac {d}{dx}}\left(N_{xx}{\cfrac {dw_{0}}{dx}}\right)\right]~dx&=0{\text{(4)}}\qquad \end{aligned}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/15c9462217326b558362e9c2b2b1d01420848b51)
To get the symmetric weak forms, we integrate by parts (even though the symmetry is not obvious at this stage) to get

Integrate equation (6) again by parts, and get

Collect terms and rearrange equations (5) and (7) to get
![{\displaystyle {\begin{aligned}\int _{x_{a}}^{x_{b}}{\cfrac {dv_{1}}{dx}}N_{xx}~dx&=\int _{x_{a}}^{x_{b}}v_{1}~f(x)~dx+\left.(v_{1}~N_{xx})\right|_{x_{a}}^{x_{b}}{\text{(8)}}\qquad \\\int _{x_{a}}^{x_{b}}\left[{\cfrac {dv_{2}}{dx}}\left(N_{xx}{\cfrac {dw_{0}}{dx}}\right)-{\cfrac {d^{2}v_{2}}{dx^{2}}}M_{xx}\right]~dx&=\int _{x_{a}}^{x_{b}}v_{2}~q(x)~dx+\\&\left[\left(v_{2}~{\cfrac {dM_{xx}}{dx}}\right)-\left({\cfrac {dv_{2}}{dx}}~M_{xx}\right)+\left(v_{2}~N_{xx}{\cfrac {dw_{0}}{dx}}\right)\right]_{x_{a}}^{x_{b}}{\text{(9)}}\qquad \end{aligned}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/e34129035df1f97ff6dcf81893ff771d46d1bb80)
Rewriting the equations, we get
![{\displaystyle {\begin{aligned}\int _{x_{a}}^{x_{b}}{\cfrac {dv_{1}}{dx}}N_{xx}~dx&=\int _{x_{a}}^{x_{b}}v_{1}f~dx+\left.v_{1}N_{xx}\right|_{x_{a}}^{x_{b}}\\\int _{x_{a}}^{x_{b}}\left[{\cfrac {dv_{2}}{dx}}\left(N_{xx}{\cfrac {dw_{0}}{dx}}\right)-{\cfrac {d^{2}v_{2}}{dx^{2}}}M_{xx}\right]~dx&=\int _{x_{a}}^{x_{b}}v_{2}q~dx+\left[v_{2}\left({\cfrac {dM_{xx}}{dx}}+N_{xx}{\cfrac {dw_{0}}{dx}}\right)\right]_{x_{a}}^{x_{b}}-\left[{\cfrac {dv_{2}}{dx}}~M_{xx}\right]_{x_{a}}^{x_{b}}\end{aligned}}{\text{(10)}}\qquad }](https://wikimedia.org/api/rest_v1/media/math/render/svg/30e4d70102f1aeee703676d046a217d5ee8527a3)
Hence shown.
The von Karman strains are related to the displacements by

The stress and moment resultants are defined as

For a linear elastic material, the stiffnesses of the beam in extension and bending are defined as

where
is the Young's modulus of the material.
Derive expressions for
and
in terms of the displacements
and
and the extensional and bending stiffnesses of the beam assuming a linear elastic material.
The stress-strain relations for an isotropic linear elastic material are

Since all strains other than
are zero, the above equations reduce to

If we ignore the stresses
and
, the only allowable value of
is zero. Then the stress-strain relations become

Plugging this relation into the stress and moment of stress resultant equations, we get

Plugging in the relations for the strain we get

Since both
and
are independent of
and
, we can take these quantities outside the integrals and get

Using the definitions of the extensional, extensional-bending, and bending stiffness, we can then write

To write these relations in terms of
and
we substitute the expressions for the von Karman strains to get
![{\displaystyle {\begin{aligned}N_{xx}&=\left[{\cfrac {du_{0}}{dx}}+{\frac {1}{2}}\left({\cfrac {dw_{0}}{dx}}\right)^{2}\right]A_{xx}-{\cfrac {d^{2}w_{0}}{dx^{2}}}B_{xx}\\M_{xx}&=\left[{\cfrac {du_{0}}{dx}}+{\frac {1}{2}}\left({\cfrac {dw_{0}}{dx}}\right)^{2}\right]B_{xx}-{\cfrac {d^{2}w_{0}}{dx^{2}}}D_{xx}~.\end{aligned}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/117418c9ec061a88eda67c91706ba5dfdfd52b60)
These are the expressions of the resultants in terms of the displacements.
Express the weak forms in terms of the displacements and the extensional and bending stiffnesses.
The weak form equations are
![{\displaystyle {\begin{aligned}\int _{x_{a}}^{x_{b}}{\cfrac {dv_{1}}{dx}}N_{xx}~dx&=\int _{x_{a}}^{x_{b}}v_{1}f~dx+\left.v_{1}N_{xx}\right|_{x_{a}}^{x_{b}}{\text{(11)}}\qquad \\\int _{x_{a}}^{x_{b}}\left[{\cfrac {dv_{2}}{dx}}\left(N_{xx}{\cfrac {dw_{0}}{dx}}\right)-{\cfrac {d^{2}v_{2}}{dx^{2}}}M_{xx}\right]~dx&=\int _{x_{a}}^{x_{b}}v_{2}q~dx+\left[v_{2}\left({\cfrac {dM_{xx}}{dx}}+N_{xx}{\cfrac {dw_{0}}{dx}}\right)\right]_{x_{a}}^{x_{b}}-\left[{\cfrac {dv_{2}}{dx}}~M_{xx}\right]_{x_{a}}^{x_{b}}{\text{(12)}}\qquad \end{aligned}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/82952f1e563868d95a81ed0e05845d526926a39d)
At this stage we make two more assumptions:
- The elastic modulus is constant throughout the cross-section.
- The
-axis passes through the centroid of the cross-section.
From the first assumption, we have

From the second assumption, we get

Then the relations for
and
reduce to
![{\displaystyle {\begin{aligned}N_{xx}&=\left[{\cfrac {du_{0}}{dx}}+{\frac {1}{2}}\left({\cfrac {dw_{0}}{dx}}\right)^{2}\right]A_{xx}{\text{(13)}}\qquad \\M_{xx}&=-{\cfrac {d^{2}w_{0}}{dx^{2}}}D_{xx}{\text{(14)}}\qquad ~.\end{aligned}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/15c02c3f7076d9d754d353da96fc81af0738b332)
Let us first consider equation (11). Plugging in the expression for
we get
![{\displaystyle \int _{x_{a}}^{x_{b}}{\cfrac {dv_{1}}{dx}}\left[{\cfrac {du_{0}}{dx}}+{\frac {1}{2}}\left({\cfrac {dw_{0}}{dx}}\right)^{2}\right]A_{xx}~dx=\int _{x_{a}}^{x_{b}}v_{1}f~dx+\left.v_{1}N_{xx}\right|_{x_{a}}^{x_{b}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/9d1c45074ad3c339bc26d9bc73f38db1b2610089)
We can also write the above in terms of virtual displacements by defining
,
, and
. Then we get
![{\displaystyle \int _{x_{a}}^{x_{b}}{\cfrac {d(\delta u_{0})}{dx}}\left[{\cfrac {du_{0}}{dx}}+{\frac {1}{2}}\left({\cfrac {dw_{0}}{dx}}\right)^{2}\right]A_{xx}~dx=\int _{x_{a}}^{x_{b}}(\delta u_{0})f~dx+\delta u_{0}(x_{a})Q_{1}+\delta u_{0}(x_{b})Q_{4}~.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/2a985b238efb6711384db9f9abc968d926b835b9)
Next, we do the same for equation (12). Plugging in the expressions for
and
, we get
![{\displaystyle {\begin{aligned}\int _{x_{a}}^{x_{b}}\left\{{\cfrac {dv_{2}}{dx}}\left(\left[{\cfrac {du_{0}}{dx}}+{\cfrac {1}{2}}~\left({\cfrac {dw_{0}}{dx}}\right)^{2}\right]A_{xx}{\cfrac {dw_{0}}{dx}}\right)\right.&+\left.{\cfrac {d^{2}v_{2}}{dx^{2}}}\left({\cfrac {d^{2}w_{0}}{dx^{2}}}\right)D_{xx}\right\}~dx=\int _{x_{a}}^{x_{b}}v_{2}q~dx+\\&\left[v_{2}\left({\cfrac {dM_{xx}}{dx}}+N_{xx}{\cfrac {dw_{0}}{dx}}\right)\right]_{x_{a}}^{x_{b}}-\left[{\cfrac {dv_{2}}{dx}}~M_{xx}\right]_{x_{a}}^{x_{b}}\end{aligned}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/5d75158b4d5a5fe51f8339b6921cbe76021f7999)
We can write the above in terms of the virtual displacements and the generalized forces by defining
![{\displaystyle {\begin{aligned}\delta w_{0}&:=v_{2}\\\delta \theta &:={\cfrac {dv_{2}}{dx}}\\Q_{2}&:=-\left[{\cfrac {dM_{xx}}{dx}}+N_{xx}{\cfrac {dw_{0}}{dx}}\right]_{x_{a}}\\Q_{5}&:=\left[{\cfrac {dM_{xx}}{dx}}+N_{xx}{\cfrac {dw_{0}}{dx}}\right]_{x_{b}}\\Q_{3}&:=-M_{xx}(x_{a})\\Q_{6}&:=M_{xx}(x_{b})\end{aligned}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/2f7f6602061d65d31071b5e1e5aa92586d2ea761)
to get
![{\displaystyle {\begin{aligned}\int _{x_{a}}^{x_{b}}\left\{{\cfrac {d(\delta w_{0})}{dx}}\right.&\left[{\cfrac {du_{0}}{dx}}+{\cfrac {1}{2}}~\left({\cfrac {dw_{0}}{dx}}\right)^{2}\right]{\cfrac {dw_{0}}{dx}}A_{xx}+\left.{\cfrac {d^{2}(\delta w_{0})}{dx^{2}}}\left({\cfrac {d^{2}w_{0}}{dx^{2}}}\right)D_{xx}\right\}~dx=\\&\int _{x_{a}}^{x_{b}}(\delta w_{0})q~dx+\delta w_{0}(x_{a})Q_{2}+\delta w_{0}(x_{b})Q_{5}+\delta \theta (x_{a})Q_{3}+\delta \theta (x_{b})Q_{6}~.\end{aligned}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/13315a5aae21e0bdb3fc1eedd4d3f2fe689b09e4)
Assume that the approximate solutions for the axial displacement and the transverse deflection over a two noded element are given by

where
.
Compute the element stiffness matrix for the element.
The weak forms of the governing equations are
![{\displaystyle {\begin{aligned}\int _{x_{a}}^{x_{b}}{\cfrac {d(\delta u_{0})}{dx}}&\left[{\cfrac {du_{0}}{dx}}+{\frac {1}{2}}\left({\cfrac {dw_{0}}{dx}}\right)^{2}\right]A_{xx}~dx=\int _{x_{a}}^{x_{b}}(\delta u_{0})f~dx+\delta u_{0}(x_{a})Q_{1}+\delta u_{0}(x_{b})Q_{4}{\text{(17)}}\qquad \\\int _{x_{a}}^{x_{b}}\left\{{\cfrac {d(\delta w_{0})}{dx}}\right.&\left[{\cfrac {du_{0}}{dx}}+{\cfrac {1}{2}}~\left({\cfrac {dw_{0}}{dx}}\right)^{2}\right]{\cfrac {dw_{0}}{dx}}A_{xx}+\left.{\cfrac {d^{2}(\delta w_{0})}{dx^{2}}}\left({\cfrac {d^{2}w_{0}}{dx^{2}}}\right)D_{xx}\right\}~dx=\\&\int _{x_{a}}^{x_{b}}(\delta w_{0})q~dx+\delta w_{0}(x_{a})Q_{2}+\delta w_{0}(x_{b})Q_{5}+\delta \theta (x_{a})Q_{3}+\delta \theta (x_{b})Q_{6}~.{\text{(18)}}\qquad \end{aligned}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/316acbab865828d37851285df8a645a981eaa958)
Let us first write the approximate solutions as

where
are generalized displacements and

To formulate the finite element system of equations, we substitute the expressions from
and
from equations (19) and (20) into the weak form, and substitute the shape functions
for
,
for
.
For the first equation (17) we get
![{\displaystyle \int _{x_{a}}^{x_{b}}{\cfrac {d\psi _{i}}{dx}}\left[\left(\sum _{j=1}^{2}u_{j}{\cfrac {d\psi _{j}}{dx}}\right)+{\frac {1}{2}}{\cfrac {dw_{0}}{dx}}\left(\sum _{j=1}^{4}d_{j}{\cfrac {d\phi _{j}}{dx}}\right)\right]A_{xx}~dx=\int _{x_{a}}^{x_{b}}\psi _{i}f~dx+\psi _{i}(x_{a})Q_{1}+\psi _{i}(x_{b})Q_{4}~.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/69933d49f9af3eac974b271cdcaba9a8b5c81f3e)
After reorganizing, we have
![{\displaystyle {\begin{aligned}\sum _{j=1}^{2}\left[\int _{x_{a}}^{x_{b}}A_{xx}{\cfrac {d\psi _{i}}{dx}}{\cfrac {d\psi _{j}}{dx}}~dx\right]u_{j}&+\sum _{j=1}^{4}\left[{\frac {1}{2}}\int _{x_{a}}^{x_{b}}\left(A_{xx}{\cfrac {dw_{0}}{dx}}\right){\cfrac {d\psi _{i}}{dx}}{\cfrac {d\phi _{j}}{dx}}~dx\right]d_{j}=\\&\int _{x_{a}}^{x_{b}}\psi _{i}f~dx+\psi _{i}(x_{a})Q_{1}+\psi _{i}(x_{b})Q_{4}~.\end{aligned}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/5a474db7c46d069fdf7eb1cf2e30a67b70c68f1b)
We can write the above as

where
and

For the second equation (18) we get
![{\displaystyle {\begin{aligned}\int _{x_{a}}^{x_{b}}\left\{{\cfrac {d\phi _{i}}{dx}}\right.&\left[\left(\sum _{j=1}^{2}u_{j}{\cfrac {d\psi _{j}}{dx}}\right)+{\frac {1}{2}}{\cfrac {dw_{0}}{dx}}\left(\sum _{j=1}^{4}d_{j}{\cfrac {d\phi _{j}}{dx}}\right)\right]{\cfrac {dw_{0}}{dx}}A_{xx}+\left.{\cfrac {d^{2}\phi _{i}}{dx^{2}}}\left(\sum _{j=1}^{4}d_{j}{\cfrac {d^{2}\phi _{j}}{dx^{2}}}\right)D_{xx}\right\}~dx=\\&\int _{x_{a}}^{x_{b}}\phi _{i}q~dx+\phi _{i}(x_{a})Q_{2}+\phi _{i}(x_{b})Q_{5}+{\cfrac {d\phi _{i}}{dx}}(x_{a})Q_{3}+{\cfrac {d\phi _{i}}{dx}}(x_{b})Q_{6}\end{aligned}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/4dae668bd736e277922a22e0a7cbfa729f37b4a5)
After rearranging we get
![{\displaystyle {\begin{aligned}\sum _{j=1}^{2}\left[\int _{x_{a}}^{x_{b}}\left(A_{xx}{\cfrac {dw_{0}}{dx}}\right){\cfrac {d\phi _{i}}{dx}}{\cfrac {d\psi _{j}}{dx}}~dx\right]u_{j}&+\sum _{j=1}^{4}\left\{{\frac {1}{2}}\int _{x_{a}}^{x_{b}}\left[A_{xx}\left({\cfrac {dw_{0}}{dx}}\right)^{2}\right]{\cfrac {d\phi _{i}}{dx}}{\cfrac {d\phi _{j}}{dx}}~dx\right\}d_{j}\\&+\sum _{j=1}^{4}\left(\int _{x_{a}}^{x_{b}}D_{xx}{\cfrac {d^{2}\phi _{i}}{dx^{2}}}{\cfrac {d^{2}\phi _{j}}{dx^{2}}}~dx\right)d_{j}=\\&\int _{x_{a}}^{x_{b}}\phi _{i}q~dx+\phi _{i}(x_{a})Q_{2}+\phi _{i}(x_{b})Q_{5}+{\cfrac {d\phi _{i}}{dx}}(x_{a})Q_{3}+{\cfrac {d\phi _{i}}{dx}}(x_{b})Q_{6}\end{aligned}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/3bb47d0fbbede4c944b65dac02dc04fe3fb66077)
We can write the above as

where
and
![{\displaystyle {\begin{aligned}K_{ij}^{21}&=\int _{x_{a}}^{x_{b}}\left(A_{xx}{\cfrac {dw_{0}}{dx}}\right){\cfrac {d\phi _{i}}{dx}}{\cfrac {d\psi _{j}}{dx}}~dx\\K_{ij}^{22}&=\int _{x_{a}}^{x_{b}}\left\{{\frac {1}{2}}\left[A_{xx}\left({\cfrac {dw_{0}}{dx}}\right)^{2}\right]{\cfrac {d\phi _{i}}{dx}}{\cfrac {d\phi _{j}}{dx}}+D_{xx}{\cfrac {d^{2}\phi _{i}}{dx^{2}}}{\cfrac {d^{2}\phi _{j}}{dx^{2}}}\right\}~dx\\F_{i}^{2}&=\int _{x_{a}}^{x_{b}}\phi _{i}q~dx+\phi _{i}(x_{a})Q_{2}+\phi _{i}(x_{b})Q_{5}+{\cfrac {d\phi _{i}}{dx}}(x_{a})Q_{3}+{\cfrac {d\phi _{i}}{dx}}(x_{b})Q_{6}~.\end{aligned}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/a8c41d27c28cd25ca96086a1ff09b126173a3168)
In matrix form, we can write

or

The finite element system of equations can then be written as

or

Show the alternate procedure by which the element stiffness matrix can be made symmetric.
The stiffness matrix is unsymmetric because
contains a factor of
while
does not. The expressions of these terms are

To get a symmetric stiffness matrix, we write equation (18) as
![{\displaystyle {\begin{aligned}\int _{x_{a}}^{x_{b}}\left\{{\cfrac {d(\delta w_{0})}{dx}}\right.&\left[{\frac {1}{2}}{\cfrac {du_{0}}{dx}}+{\frac {1}{2}}\left({\cfrac {dw_{0}}{dx}}\right)^{2}+{{\frac {1}{2}}{\cfrac {du_{0}}{dx}}}\right]{\cfrac {dw_{0}}{dx}}A_{xx}+\left.{\cfrac {d^{2}(\delta w_{0})}{dx^{2}}}\left({\cfrac {d^{2}w_{0}}{dx^{2}}}\right)D_{xx}\right\}~dx=\\&\int _{x_{a}}^{x_{b}}(\delta w_{0})q~dx+\delta w_{0}(x_{a})Q_{2}+\delta w_{0}(x_{b})Q_{5}+\delta \theta (x_{a})Q_{3}+\delta \theta (x_{b})Q_{6}~.\end{aligned}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/37dd3b787e3a8a6660dfa543280c93cf85480e57)
The quantity is green is assumed to be known from a previous iteration and adds to the
terms.
Repeating the procedure used in the previous question
![{\displaystyle {\begin{aligned}\int _{x_{a}}^{x_{b}}\left\{{\cfrac {d\phi _{i}}{dx}}\right.&\left[{\frac {1}{2}}\left(\sum _{j=1}^{2}u_{j}{\cfrac {d\psi _{j}}{dx}}\right)+{\frac {1}{2}}{\cfrac {dw_{0}}{dx}}\left(\sum _{j=1}^{4}d_{j}{\cfrac {d\phi _{j}}{dx}}\right)\right]{\cfrac {dw_{0}}{dx}}A_{xx}+{{\frac {1}{2}}{\cfrac {d\phi _{i}}{dx}}{\cfrac {du_{0}}{dx}}\left(\sum _{j=1}^{4}d_{j}{\cfrac {d\phi _{j}}{dx}}\right)A_{xx}+}\\&\left.{\cfrac {d^{2}\phi _{i}}{dx^{2}}}\left(\sum _{j=1}^{4}d_{j}{\cfrac {d^{2}\phi _{j}}{dx^{2}}}\right)D_{xx}\right\}~dx=\\&\int _{x_{a}}^{x_{b}}\phi _{i}q~dx+\phi _{i}(x_{a})Q_{2}+\phi _{i}(x_{b})Q_{5}+{\cfrac {d\phi _{i}}{dx}}(x_{a})Q_{3}+{\cfrac {d\phi _{i}}{dx}}(x_{b})Q_{6}\end{aligned}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/a9160e26d0cfbd184e82fb9f5b96069e7c631489)
After rearranging we get
![{\displaystyle {\begin{aligned}\sum _{j=1}^{2}&\left[{\frac {1}{2}}\int _{x_{a}}^{x_{b}}\left(A_{xx}{\cfrac {dw_{0}}{dx}}\right){\cfrac {d\phi _{i}}{dx}}{\cfrac {d\psi _{j}}{dx}}~dx\right]u_{j}+\sum _{j=1}^{4}\left\{{\frac {1}{2}}\int _{x_{a}}^{x_{b}}\left[A_{xx}\left({\cfrac {dw_{0}}{dx}}\right)^{2}\right]{\cfrac {d\phi _{i}}{dx}}{\cfrac {d\phi _{j}}{dx}}~dx\right\}d_{j}+\\&{\sum _{j=1}^{4}\left[{\frac {1}{2}}\int _{x_{a}}^{x_{b}}A_{xx}{\cfrac {du_{0}}{dx}}{\cfrac {d\phi _{i}}{dx}}{\cfrac {d\phi _{j}}{dx}}~dx\right]d_{j}}+\sum _{j=1}^{4}\left(\int _{x_{a}}^{x_{b}}D_{xx}{\cfrac {d^{2}\phi _{i}}{dx^{2}}}{\cfrac {d^{2}\phi _{j}}{dx^{2}}}~dx\right)d_{j}=\\&\int _{x_{a}}^{x_{b}}\phi _{i}q~dx+\phi _{i}(x_{a})Q_{2}+\phi _{i}(x_{b})Q_{5}+{\cfrac {d\phi _{i}}{dx}}(x_{a})Q_{3}+{\cfrac {d\phi _{i}}{dx}}(x_{b})Q_{6}\end{aligned}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/c5729c6c1c9efbe0c125ecd7fdf17f9824a0a2e5)
We can write the above as

where
and
![{\displaystyle {\begin{aligned}K_{ij}^{21}&={\frac {1}{2}}\int _{x_{a}}^{x_{b}}\left(A_{xx}{\cfrac {dw_{0}}{dx}}\right){\cfrac {d\phi _{i}}{dx}}{\cfrac {d\psi _{j}}{dx}}~dx\\K_{ij}^{22}&=\int _{x_{a}}^{x_{b}}\left\{{\frac {1}{2}}A_{xx}\left[{\cfrac {du_{0}}{dx}}+\left({\cfrac {dw_{0}}{dx}}\right)^{2}\right]{\cfrac {d\phi _{i}}{dx}}{\cfrac {d\phi _{j}}{dx}}+D_{xx}{\cfrac {d^{2}\phi _{i}}{dx^{2}}}{\cfrac {d^{2}\phi _{j}}{dx^{2}}}\right\}~dx\\F_{i}^{2}&=\int _{x_{a}}^{x_{b}}\phi _{i}q~dx+\phi _{i}(x_{a})Q_{2}+\phi _{i}(x_{b})Q_{5}+{\cfrac {d\phi _{i}}{dx}}(x_{a})Q_{3}+{\cfrac {d\phi _{i}}{dx}}(x_{b})Q_{6}~.\end{aligned}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/eaafcf919a39c2706600dbc65820a5ce042e1ab5)
This gives us a symmetric stiffness matrix.
Derive the element tangent stiffness matrix for the element.
Equation (21) can be written as

where

The residual is

For Newton iterations, we use the algorithm

where the tangent stiffness matrix is given by

The coefficients of the tangent stiffness matrix are given by

Recall that the finite element system of equations can be written as

where the subscripts have been changed to avoid confusion.
Therefore, the residuals are

The derivatives of the residuals with respect to the generalized displacements are

Differentiating, we get

These equations can therefore be written as

Now, the coefficients of
,
, and
of the symmetric stiffness matrix are independent of
and
. Also, the terms of
are independent of the all the generalized displacements. Therefore, the above equations reduce to

Consider the coefficients of
:

From our previous derivation, we have

Therefore,
![{\displaystyle {\begin{aligned}{\frac {\partial K_{mq}^{12}}{\partial d_{l}}}&={\frac {1}{2}}\int _{x_{a}}^{x_{b}}\left[A_{xx}{\frac {\partial }{\partial d_{l}}}\left({\cfrac {dw_{0}}{dx}}\right)\right]{\cfrac {d\psi _{m}}{dx}}{\cfrac {d\phi _{q}}{dx}}~dx\\&={\frac {1}{2}}\int _{x_{a}}^{x_{b}}\left[A_{xx}\left(\sum _{T=1}^{4}{\frac {\partial d_{T}}{\partial d_{l}}}{\cfrac {d\phi _{T}}{dx}}\right)\right]{\cfrac {d\psi _{m}}{dx}}{\cfrac {d\phi _{q}}{dx}}~dx\\&={\frac {1}{2}}\int _{x_{a}}^{x_{b}}\left[A_{xx}{\cfrac {d\phi _{l}}{dx}}\right]{\cfrac {d\psi _{m}}{dx}}{\cfrac {d\phi _{q}}{dx}}~dx\end{aligned}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/123ddf41a015547d77a5fed4fa5d27fa04f0e9e8)
The tangent stiffness matrix coefficients are therefore
![{\displaystyle {\begin{aligned}{T_{ml}^{12}}&=K_{ml}^{12}+\sum _{q=1}^{4}d_{q}\left\{{\frac {1}{2}}\int _{x_{a}}^{x_{b}}\left[A_{xx}{\cfrac {d\phi _{l}}{dx}}\right]{\cfrac {d\psi _{m}}{dx}}{\cfrac {d\phi _{q}}{dx}}~dx\right\}\qquad m=1,2;~~l=1,2,3,4~.\\&=K_{ml}^{12}+{\frac {1}{2}}\int _{x_{a}}^{x_{b}}A_{xx}{\cfrac {d\phi _{l}}{dx}}{\cfrac {d\psi _{m}}{dx}}\left(\sum _{q=1}^{4}d_{q}{\cfrac {d\phi _{q}}{dx}}\right)~dx\\&=K_{ml}^{12}+{\frac {1}{2}}\int _{x_{a}}^{x_{b}}A_{xx}{\cfrac {d\phi _{l}}{dx}}{\cfrac {d\psi _{m}}{dx}}{\cfrac {dw_{0}}{dx}}~dx\\&={2K_{ml}^{12}}~.\end{aligned}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/5f360a4833f8dbc09ed8d644fda2f83624d704c6)
Next, {consider the coefficients of
:

The coefficients of
are
![{\displaystyle K_{nq}^{22}=\int _{x_{a}}^{x_{b}}\left\{{\frac {1}{2}}A_{xx}\left[{\cfrac {du_{0}}{dx}}+\left({\cfrac {dw_{0}}{dx}}\right)^{2}\right]{\cfrac {d\phi _{n}}{dx}}{\cfrac {d\phi _{q}}{dx}}+D_{xx}{\cfrac {d^{2}\phi _{n}}{dx^{2}}}{\cfrac {d^{2}\phi _{q}}{dx^{2}}}\right\}~dx~.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/fa0f80efe1f2fcca9beda29c2bb49fd298c91a7e)
Therefore, the derivatives are
![{\displaystyle {\begin{aligned}{\frac {\partial K_{nq}^{22}}{\partial u_{k}}}&=\int _{x_{a}}^{x_{b}}{\frac {1}{2}}A_{xx}\left[\sum _{T=1}^{2}{\frac {\partial u_{T}}{\partial u_{k}}}{\cfrac {d\psi _{T}}{dx}}+2{\cfrac {dw_{0}}{dx}}\left(\sum _{T=1}^{4}{\frac {\partial d_{T}}{\partial u_{k}}}{\cfrac {d\phi _{T}}{dx}}\right)\right]{\cfrac {d\phi _{n}}{dx}}{\cfrac {d\phi _{q}}{dx}}~dx\\&={\frac {1}{2}}\int _{x_{a}}^{x_{b}}A_{xx}{\cfrac {d\psi _{k}}{dx}}{\cfrac {d\phi _{n}}{dx}}{\cfrac {d\phi _{q}}{dx}}~dx\\\end{aligned}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/12c320ca537d797f1082a34605ef991888719985)
Therefore the coefficients of
are

Finally, for the
coefficients, we start with

and plug in the derivatives of the stiffness matrix coefficients
\\
The derivatives are
![{\displaystyle {\begin{aligned}{\frac {\partial K_{np}^{21}}{\partial d_{l}}}&={\frac {1}{2}}\int _{x_{a}}^{x_{b}}\left[A_{xx}{\frac {\partial }{\partial d_{l}}}\left({\cfrac {dw_{0}}{dx}}\right)\right]{\cfrac {d\phi _{n}}{dx}}{\cfrac {d\psi _{p}}{dx}}~dx\\&={\frac {1}{2}}\int _{x_{a}}^{x_{b}}A_{xx}\left[\sum _{T=1}^{4}{\frac {\partial d_{T}}{\partial d_{l}}}{\cfrac {d\phi _{T}}{dx}}\right]{\cfrac {d\phi _{n}}{dx}}{\cfrac {d\psi _{p}}{dx}}~dx\\&={\frac {1}{2}}\int _{x_{a}}^{x_{b}}A_{xx}{\cfrac {d\phi _{l}}{dx}}{\cfrac {d\phi _{n}}{dx}}{\cfrac {d\psi _{p}}{dx}}~dx\end{aligned}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/968885ac284619b8444be4801d347ab3f4fd201a)
and
![{\displaystyle {\begin{aligned}{\frac {\partial K_{nq}^{22}}{\partial d_{l}}}&=\int _{x_{a}}^{x_{b}}{\frac {1}{2}}A_{xx}\left[\sum _{T=1}^{2}{\frac {\partial u_{T}}{\partial d_{l}}}{\cfrac {d\psi _{T}}{dx}}+2{\cfrac {dw_{0}}{dx}}\left(\sum _{T=1}^{4}{\frac {\partial d_{T}}{\partial d_{l}}}{\cfrac {d\phi _{T}}{dx}}\right)\right]{\cfrac {d\phi _{n}}{dx}}{\cfrac {d\phi _{q}}{dx}}~dx\\&=\int _{x_{a}}^{x_{b}}A_{xx}{\cfrac {dw_{0}}{dx}}{\cfrac {d\phi _{l}}{dx}}{\cfrac {d\phi _{n}}{dx}}{\cfrac {d\phi _{q}}{dx}}~dx\end{aligned}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/d7c54e1d41d91824b4769623064248619ced9bef)
Therefore, the coefficients of the tangent stiffness matrix can be written as
![{\displaystyle {\begin{aligned}{T_{nl}^{22}}&=K_{nl}^{22}+\sum _{p=1}^{2}u_{p}\left[{\frac {1}{2}}\int _{x_{a}}^{x_{b}}A_{xx}{\cfrac {d\phi _{l}}{dx}}{\cfrac {d\phi _{n}}{dx}}{\cfrac {d\psi _{p}}{dx}}~dx\right]+\sum _{q=1}^{4}d_{q}\left[\int _{x_{a}}^{x_{b}}A_{xx}{\cfrac {dw_{0}}{dx}}{\cfrac {d\phi _{l}}{dx}}{\cfrac {d\phi _{n}}{dx}}{\cfrac {d\phi _{q}}{dx}}~dx\right]\\&=K_{nl}^{22}+{\frac {1}{2}}\int _{x_{a}}^{x_{b}}A_{xx}{\cfrac {d\phi _{l}}{dx}}{\cfrac {d\phi _{n}}{dx}}\left(\sum _{p=1}^{2}u_{p}{\cfrac {d\psi _{p}}{dx}}\right)~dx+\int _{x_{a}}^{x_{b}}A_{xx}{\cfrac {dw_{0}}{dx}}{\cfrac {d\phi _{l}}{dx}}{\cfrac {d\phi _{n}}{dx}}\left(\sum _{q=1}^{4}d_{q}{\cfrac {d\phi _{q}}{dx}}\right)~dx\\&=K_{nl}^{22}+{\frac {1}{2}}\int _{x_{a}}^{x_{b}}A_{xx}{\cfrac {d\phi _{l}}{dx}}{\cfrac {d\phi _{n}}{dx}}{\cfrac {du_{0}}{dx}}~dx+\int _{x_{a}}^{x_{b}}A_{xx}{\cfrac {dw_{0}}{dx}}{\cfrac {d\phi _{l}}{dx}}{\cfrac {d\phi _{n}}{dx}}{\cfrac {dw_{0}}{dx}}~dx\\&={K_{nl}^{22}+{\frac {1}{2}}\int _{x_{a}}^{x_{b}}A_{xx}\left[{\cfrac {du_{0}}{dx}}+2\left({\cfrac {dw_{0}}{dx}}\right)^{2}\right]{\cfrac {d\phi _{l}}{dx}}{\cfrac {d\phi _{n}}{dx}}~dx}~.\end{aligned}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/631bce58ec86fae4ded4da6ea6b0005a8f69f9b7)
The final expressions for the tangent stiffness matrix terms are
![{\displaystyle {\begin{aligned}T_{ij}^{11}&=K_{ij}^{11},&&\qquad i=1,2;~~j=1,2\\T_{ij}^{12}&=2K_{ij}^{12},&&\qquad i=1,2;~~j=1,2,3,4\\T_{ij}^{21}&=2K_{ij}^{21},&&\qquad i=1,2,3,4;~~j=1,2\\T_{ij}^{22}&=K_{ij}^{22}+{\frac {1}{2}}\int _{x_{a}}^{x_{b}}A_{xx}\left[{\cfrac {du_{0}}{dx}}+2\left({\cfrac {dw_{0}}{dx}}\right)^{2}\right]{\cfrac {d\phi _{i}}{dx}}{\cfrac {d\phi _{j}}{dx}}~dx&&\qquad i=1,2,3,4;j=1,2,3,4~.\end{aligned}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/3d53963b32dfee15b4a5cd7e01f42b323e7c9119)