Nonlinear finite elements/Axial bar approximate solution

From Wikiversity
Jump to navigation Jump to search

Approximate Solution: The Galerkin Approach[edit | edit source]

To find the finite element solution, we can either start with the strong form and derive the weak form, or we can start with a weak form derived from a variational principle.

Let us assume that the approximate solution is and plug it into the ODE. We get

where is the residual. We now try to minimize the residual in a weighted average sense

where is a weighting function. Notice that this equation is similar to equation (5) (see 'Weak form: integral equation') with in place of the variation . For the two equations to be equivalent, the weighting function must also be such that .

Therefore the approximate weak form can be written as

In Galerkin's method we assume that the approximate solution can be expressed as

In the Bubnov-Galerkin method, the weighting function is chosen to be of the same form as the approximate solution (but with arbitrary coefficients),

If we plug the approximate solution and the weighting functions into the approximate weak form, we get

This equation can be rewritten as

From the above, since is arbitrary, we have

After reorganizing, we get

which is a system of equations that can be solved for the unknown coefficients . Once we know the s, we can use them to compute approximate solution. The above equation can be written in matrix form as



The problem with the general form of the Galerkin method is that the functions are difficult to determine for complex domains.