Mathematics for Applied Sciences (Osnabrück 2023-2024)/Part I/Lecture 28/latex

From Wikiversity
Jump to navigation Jump to search

\setcounter{section}{28}






\zwischenueberschrift{The characteristic polynomial}

We want to determine, for a given endomorphism $\varphi \colon V \rightarrow V$, the eigenvalues and the eigenspaces. For this, the characteristic polynomial is decisive.




\inputdefinition
{ }
{

For an $n \times n$-matrix $M$ with entries in a field $K$, the polynomial
\mavergleichskettedisp
{\vergleichskette
{ \chi_{ M } }
{ \defeq} {\det { \left( X \cdot E_{ n } - M \right) } }
{ } { }
{ } { }
{ } { }
} {}{}{} is called the \definitionswort {characteristic polynomial}{}

of $M$.

}

For
\mavergleichskette
{\vergleichskette
{M }
{ = }{ { \left( a_{ij} \right) }_{ij} }
{ }{ }
{ }{ }
{ }{ }
} {}{}{,} this means
\mavergleichskettedisp
{\vergleichskette
{ \chi_{ M } }
{ =} { \det \begin{pmatrix} X-a_{11} & -a_{12} & \ldots & -a_{1n} \\ -a_{21} & X-a_{22} & \ldots & -a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ -a_{n1} & -a_{n2} & \ldots & X-a_{nn} \end{pmatrix} }
{ } { }
{ } { }
{ } { }
} {}{}{.}

In this definition, we use the determinant of a matrix, which we have only defined for matrices with entries in a field. The entries are now elements of the polynomial ring \mathl{K[X]}{.} But, since we can consider these elements also inside the field of rational functions \mathl{K(X)}{\zusatzfussnote {\mathlk{K(X)}{} is called the field of rational polynomials; it consists of all fractions \mathl{P/Q}{} for polynomials
\mavergleichskette
{\vergleichskette
{ P,Q }
{ \in }{ K [X] }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} with
\mavergleichskette
{\vergleichskette
{ Q }
{ \neq }{ 0 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.} For
\mavergleichskette
{\vergleichskette
{ K }
{ = }{ \R }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} or $\C$, this field can be identified with the field of rational functions} {.} {,}} this is a useful definition. By definition, the determinant is an element in \mathl{K(X)}{,} but, because all entries of the matrix are polynomials, and because in the recursive definition of the determinant, only addition and multiplication is used, the characteristic polynomial is indeed a polynomial. The degree of the characteristic polynomial is $n$, and its leading coefficient is $1$, so it has the form
\mavergleichskettedisp
{\vergleichskette
{ \chi_{ M } }
{ =} { X^n + c_{n-1}X^{n-1} + \cdots + c_1 X+c_0 }
{ } { }
{ } { }
{ } { }
} {}{}{.}

We have the important relation
\mavergleichskettedisp
{\vergleichskette
{ \chi_{ M } (\lambda) }
{ =} { \det { \left( \lambda E_{ n } - M \right) } }
{ } { }
{ } { }
{ } { }
} {}{}{} for every
\mavergleichskette
{\vergleichskette
{ \lambda }
{ \in }{ K }
{ }{ }
{ }{ }
{ }{ }
} {}{}{,} see Exercise 28.4 . Here, on the left-hand side, the number $\lambda$ is inserted into the polynomial, and on the right-hand side, we have the determinant of a matrix which depends on $\lambda$.

For a linear mapping
\mathdisp {\varphi \colon V \longrightarrow V} { }
on a finite-dimensional vector space, the \stichwort {characteristic polynomial} {} is defined by
\mavergleichskettedisp
{\vergleichskette
{ \chi_{ \varphi } }
{ \defeq} { \chi_{ M } }
{ } { }
{ } { }
{ } { }
} {}{}{,} where $M$ is a describing matrix with respect to some basis. The multiplication theorem for the determinant shows that this definition is independent of the choice of the basis, see Exercise 28.3 .




\inputfaktbeweis
{Endomorphism/Eigenvalue and characteristic polynomial/Fact}
{Theorem}
{}
{

\faktsituation {Let $K$ denote a field, and let $V$ denote an $n$-dimensional vector space. Let
\mathdisp {\varphi \colon V \longrightarrow V} { }
denote a linear mapping.}
\faktfolgerung {Then
\mavergleichskette
{\vergleichskette
{ \lambda }
{ \in }{ K }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} is an eigenvalue of $\varphi$, if and only if $\lambda$ is a zero of the characteristic polynomial $\chi_{ \varphi }$.}
\faktzusatz {}

}
{

Let $M$ denote a describing matrix for $\varphi$, and let
\mavergleichskette
{\vergleichskette
{ \lambda }
{ \in }{K }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} be given. We have
\mavergleichskettedisp
{\vergleichskette
{ \chi_{ M }\, (\lambda) }
{ =} { \det { \left( \lambda E_{ n } - M \right) } }
{ =} { 0 }
{ } { }
{ } { }
} {}{}{,} if and only if the linear mapping
\mathdisp {\lambda \operatorname{Id}_{ V } - \varphi} { }
is not bijective \zusatzklammer {and not injective} {} {} \zusatzklammer {due to Theorem 26.11 and Lemma 25.11 } {} {.} This is, because of Lemma 27.11 and Lemma 24.14 , equivalent with
\mavergleichskettedisp
{\vergleichskette
{ \operatorname{Eig}_{ \lambda } { \left( \varphi \right) } }
{ =} { \operatorname{ker} { \left( ( \lambda \operatorname{Id}_{ V } - \varphi)\right) } }
{ \neq} { 0 }
{ } { }
{ } { }
} {}{}{,} and this means that the eigenspace for $\lambda$ is not the nullspace, thus $\lambda$ is an eigenvalue for $\varphi$.

}





\inputbeispiel{}
{

We consider the real matrix
\mavergleichskette
{\vergleichskette
{M }
{ = }{ \begin{pmatrix} 0 & 5 \\ 1 & 0 \end{pmatrix} }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.} The characteristic polynomial is
\mavergleichskettealign
{\vergleichskettealign
{ \chi_{ M } }
{ =} { \det { \left( x E_2 -M \right) } }
{ =} { \det { \left( x \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} - \begin{pmatrix} 0 & 5 \\ 1 & 0 \end{pmatrix} \right) } }
{ =} { \det \begin{pmatrix} x & -5 \\ -1 & x \end{pmatrix} }
{ =} { x^2-5 }
} {} {}{.} The eigenvalues are therefore
\mavergleichskette
{\vergleichskette
{x }
{ = }{ \pm \sqrt{5} }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} \zusatzklammer {we have found these eigenvalues already in Example 27.9 , without using the characteristic polynomial} {} {.}

}




\inputbeispiel{}
{

For the matrix
\mavergleichskettedisp
{\vergleichskette
{M }
{ =} { \begin{pmatrix} 2 & 5 \\ -3 & 4 \end{pmatrix} }
{ } { }
{ } { }
{ } { }
} {}{}{,} the characteristic polynomial is
\mavergleichskettedisp
{\vergleichskette
{ \chi_{ M } }
{ =} { \det \begin{pmatrix} X-2 & -5 \\ 3 & X-4 \end{pmatrix} }
{ =} { (X-2)(X-4) +15 }
{ =} { X^2 -6X +23 }
{ } { }
} {}{}{.} Finding the zeroes of this polynomial leads to the condition
\mavergleichskettedisp
{\vergleichskette
{ (X-3)^2 }
{ =} { -23 +9 }
{ =} { -14 }
{ } { }
{ } { }
} {}{}{,} which has no solution over $\R$, so that the matrix has no eigenvalues over $\R$. However, considered over the complex numbers $\Complex$, we have the two eigenvalues \mathkor {} {3+\sqrt{14} { \mathrm i}} {and} {3 - \sqrt{14} { \mathrm i}} {.} For the eigenspace for \mathl{3+\sqrt{14} { \mathrm i}}{,} we have to determine
\mavergleichskettealign
{\vergleichskettealign
{ \operatorname{Eig}_{ 3+\sqrt{14} { \mathrm i} } { \left( M \right) } }
{ =} { \operatorname{ker} { \left( { \left( { \left( 3+ \sqrt{14} { \mathrm i} \right) } E_2 - M \right) } \right) } }
{ =} { \operatorname{ker} { \left( \begin{pmatrix} 1 + \sqrt{14} { \mathrm i} & -5 \\ 3 & -1 + \sqrt{14} { \mathrm i} \end{pmatrix} \right) } }
{ } { }
{ } { }
} {} {}{,} a basis vector \zusatzklammer {hence an eigenvector} {} {} of this is \mathl{\begin{pmatrix} 5 \\1+ \sqrt{14} { \mathrm i} \end{pmatrix}}{.} Analogously, we get
\mavergleichskettedisp
{\vergleichskette
{ \operatorname{Eig}_{ 3 -\sqrt{14} { \mathrm i} } { \left( M \right) } }
{ =} { \operatorname{ker} { \left( \begin{pmatrix} 1 - \sqrt{14} { \mathrm i} & -5 \\ 3 & -1 - \sqrt{14} { \mathrm i} \end{pmatrix} \right) } }
{ =} { \langle \begin{pmatrix} 5 \\1 - \sqrt{14} { \mathrm i} \end{pmatrix} \rangle }
{ } { }
{ } { }
} {}{}{.}

}




\inputbeispiel{}
{

For an upper triangular matrix
\mavergleichskettedisp
{\vergleichskette
{M }
{ =} { \begin{pmatrix} d_1 & \ast & \cdots & \cdots & \ast \\ 0 & d_2 & \ast & \cdots & \ast \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & d_{ n-1} & \ast \\ 0 & \cdots & \cdots & 0 & d_{ n } \end{pmatrix} }
{ } { }
{ } { }
{ } { }
} {}{}{,} the characteristic polynomial is
\mavergleichskettedisp
{\vergleichskette
{ \chi_{ M } }
{ =} { (X-d_1)(X-d_2) \cdots (X-d_n) }
{ } { }
{ } { }
{ } {}
} {}{}{,} due to Lemma 26.8 . In this case, we have directly a factorization of the characteristic polynomial into linear factors, so that we can see immediately the zeroes and the eigenvalues of $M$, namely just the diagonal elements \mathl{d_1,d_2 , \ldots , d_n}{} \zusatzklammer {which might not be all different} {} {.}

}






\zwischenueberschrift{Multiplicities}

For a more detailed investigation of eigenspaces, the following concepts are necessary. Let
\mathdisp {\varphi \colon V \longrightarrow V} { }
denote a linear mapping on a finite-dimensional vector space $V$, and
\mavergleichskette
{\vergleichskette
{ \lambda }
{ \in }{ K }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.} Then the exponent of the linear polynomial \mathl{X - \lambda}{} inside the characteristic polynomial $\chi_{ \varphi }$ is called the \stichwort {algebraic multiplicity} {} of $\lambda$, symbolized as
\mavergleichskette
{\vergleichskette
{ \mu_\lambda }
{ \defeq }{ \mu_\lambda(\varphi) }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.} The dimension of the corresponding eigenspace, that is
\mathdisp {\dim_{ } { \left( \operatorname{Eig}_{ \lambda } { \left( \varphi \right) } \right) }} { , }
is called the \stichwort {geometric multiplicity} {} of $\lambda$. Because of Theorem 28.2 , the algebraic multiplicity is positive if and only if the geometric multiplicity is positive. In general, these multiplicities might be different, we have however always one estimate.




\inputfaktbeweis
{Endomorphism/Geometric and algebraic multiplicity/Fact}
{Lemma}
{}
{

\faktsituation {Let $K$ denote a field, and let $V$ denote a finite-dimensional vector space. Let
\mathdisp {\varphi \colon V \longrightarrow V} { }
denote a linear mapping and
\mavergleichskette
{\vergleichskette
{ \lambda }
{ \in }{ K }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.}}
\faktfolgerung {Then we have the estimate
\mavergleichskettedisp
{\vergleichskette
{ \dim_{ } { \left( \operatorname{Eig}_{ \lambda } { \left( \varphi \right) } \right) } }
{ \leq} { \mu_\lambda(\varphi) }
{ } { }
{ } { }
{ } { }
} {}{}{} between the geometric and the algebraic multiplicity.}
\faktzusatz {}

}
{

Let
\mavergleichskette
{\vergleichskette
{m }
{ = }{ \dim_{ } { \left( \operatorname{Eig}_{ \lambda } { \left( \varphi \right) } \right) } }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} and let \mathl{v_1 , \ldots , v_m}{} be a basis of this eigenspace. We complement this basis with \mathl{w_1 , \ldots , w_{n-m}}{} to get a basis of $V$, using Theorem 23.23 . With respect to this basis, the describing matrix has the form
\mathdisp {\begin{pmatrix} \lambda E_m & B \\ 0 & C \end{pmatrix}} { . }
The characteristic polynomial equals therefore \zusatzklammer {using Exercise 26.9 } {} {} \mathl{(X- \lambda)^m \cdot \chi_{ C }}{,} so that the algebraic multiplicity is at least $m$.

}





\inputbeispiel{}
{

We consider the \mathl{2\times 2}{-}\stichwort {shearing matrix} {}
\mavergleichskettedisp
{\vergleichskette
{ M }
{ =} { \begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix} }
{ } { }
{ } { }
{ } { }
} {}{}{,} with
\mavergleichskette
{\vergleichskette
{a }
{ \in }{K }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.} The characteristic polynomial is
\mavergleichskettedisp
{\vergleichskette
{ \chi_{ M } }
{ =} {(X-1)(X-1) }
{ } { }
{ } { }
{ } { }
} {}{}{,} so that $1$ is the only eigenvalue of $M$. The corresponding eigenspace is
\mavergleichskettedisp
{\vergleichskette
{ \operatorname{Eig}_{ 1 } { \left( M \right) } }
{ =} { \operatorname{ker} { \left( \begin{pmatrix} 0 & -a \\ 0 & 0 \end{pmatrix} \right) } }
{ } { }
{ } { }
{ } { }
} {}{}{.} From
\mavergleichskettedisp
{\vergleichskette
{ \begin{pmatrix} 0 & -a \\ 0 & 0 \end{pmatrix} \begin{pmatrix} r \\s \end{pmatrix} }
{ =} { \begin{pmatrix} -as \\0 \end{pmatrix} }
{ } { }
{ } { }
{ } { }
} {}{}{,} we get that \mathl{\begin{pmatrix} 1 \\0 \end{pmatrix}}{} is an eigenvector, and in case
\mavergleichskette
{\vergleichskette
{a }
{ \neq }{0 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{,} the eigenspace is one-dimensional \zusatzklammer {in case
\mavergleichskette
{\vergleichskette
{ a }
{ = }{ 0 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{,} we have the identity and the eigenspace is two-dimensional} {} {.} So in case
\mavergleichskette
{\vergleichskette
{a }
{ \neq }{0 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{,} the algebraic multiplicity of the eigenvalue $1$ equals $2$, and the geometric multiplicity equals $1$.

}






\zwischenueberschrift{Diagonalizable mappings}

The restriction of a linear mapping to an eigenspace is the homothety with the corresponding eigenvalue, so this is a quite simple linear mapping. If there are many eigenvalues with high-dimensional eigenspaces, then usually the linear mapping is simple in some sense. An extreme case are the so-called diagonalizable mappings.

For a diagonal matrix
\mathdisp {\begin{pmatrix} d_1 & 0 & \cdots & \cdots & 0 \\ 0 & d_2 & 0 & \cdots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & d_{ n-1} & 0 \\ 0 & \cdots & \cdots & 0 & d_{ n } \end{pmatrix}} { , }
the characteristic polynomial is just
\mathdisp {(X-d_1) (X-d_2) \cdots (X-d_n)} { . }
If the number $d$ occurs $k$-times as a diagonal entry, then also the linear factor \mathl{X-d}{} occurs with exponent $k$ inside the factorization of the characteristic polynomial. This is also true when we just have an upper triangular matrix. But in the case of a diagonal matrix, we can also read of immediately the eigenspaces, see Example 27.7 . The eigenspace for $d$ consists of all linear combinations of the standard vectors $e_i$, for which $d_i$ equals $d$. In particular, the dimension of the eigenspace equals the number how often $d$ occurs as a diagonal element. Thus, for a diagonal matrix, the algebraic and the geometric multiplicities coincide.




\inputdefinition
{ }
{

Let $K$ denote a field, let $V$ denote a vector space, and let
\mathdisp {\varphi \colon V \longrightarrow V} { }
denote a linear mapping. Then $\varphi$ is called \definitionswort {diagonalizable}{,} if $V$ has a basis consisting of eigenvectors

for $\varphi$.

}




\inputfaktbeweis
{Linear mapping/Diagonalizable/Characterizations/Fact}
{Theorem}
{}
{

\faktsituation {Let $K$ denote a field, and let $V$ denote a finite-dimensional vector space. Let
\mathdisp {\varphi \colon V \longrightarrow V} { }
denote a linear mapping.}
\faktuebergang {Then the following statements are equivalent.}
\faktfolgerung {\aufzaehlungdrei {$\varphi$ is diagonalizable. } {There exists a basis $\mathfrak{ v }$ of $V$ such that the describing matrix \mathl{M_ \mathfrak{ v }^ \mathfrak{ v }(\varphi)}{} is a diagonal matrix. } {For every describing matrix
\mavergleichskette
{\vergleichskette
{M }
{ = }{ M_ \mathfrak{ w }^ \mathfrak{ w }(\varphi) }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} with respect to a basis $\mathfrak{ w }$, there exists an invertible matrix $B$ such that
\mathdisp {B M B^{-1}} { }
is a diagonal matrix. }}
\faktzusatz {}

}
{

The equivalence between (1) and (2) follows from the definition, from Example 27.7 , and the correspondence between linear mappings and matrices. The equivalence between (2) and (3) follows from Corollary 25.9 .

}





\inputfaktbeweis
{Linear mapping/Different eigenvalues/Diagonalizable/Fact}
{Corollary}
{}
{

\faktsituation {Let $K$ denote a field, and let $V$ denote a finite-dimensional vector space. Let
\mathdisp {\varphi \colon V \longrightarrow V} { }
denote a linear mapping.}
\faktvoraussetzung {Suppose that there exists $n$ different eigenvalues.}
\faktfolgerung {Then $\varphi$ is diagonalizable.}
\faktzusatz {}

}
{

Because of Lemma 27.14 , there exist $n$ linearly independent eigenvectors. These form, due to Corollary 23.21 , a basis.

}





\inputbeispiel{}
{

We continue with Example 27.9 . There exists the two eigenvectors \mathkor {} {\begin{pmatrix} \sqrt{5} \\1 \end{pmatrix}} {and} {\begin{pmatrix} -\sqrt{5} \\1 \end{pmatrix}} {} for the different eigenvalues \mathkor {} {\sqrt{5}} {and} {- \sqrt{5}} {,} so that the mapping is diagonalizable, due to Corollary 28.10 . With respect to the basis $\mathfrak{ u }$, consisting of these eigenvectors, the linear mapping is described by the diagonal matrix
\mathdisp {\begin{pmatrix} \sqrt{5} & 0 \\ 0 & - \sqrt{5} \end{pmatrix}} { . }

The transformation matrix, from the basis $\mathfrak{ u }$ to the standard basis $\mathfrak{ v }$, consisting of \mathkor {} {e_1} {and} {e_2} {,} is simply
\mavergleichskettedisp
{\vergleichskette
{ M^{ \mathfrak{ u } }_{ \mathfrak{ v } } }
{ =} { \begin{pmatrix} \sqrt{5} & - \sqrt{5} \\ 1 & 1 \end{pmatrix} }
{ } { }
{ } { }
{ } { }
} {}{}{.} The inverse matrix is
\mavergleichskettedisp
{\vergleichskette
{ \frac{1}{2 \sqrt{5} } \begin{pmatrix} 1 & \sqrt{5} \\ -1 & \sqrt{5} \end{pmatrix} }
{ =} { \begin{pmatrix} \frac{1}{2 \sqrt{5} } & \frac{1}{2} \\ \frac{-1}{2 \sqrt{5} } & \frac{1}{2} \end{pmatrix} }
{ } { }
{ } { }
{ } { }
} {}{}{.} Because of Corollary 25.9 , we have the relation
\mavergleichskettealign
{\vergleichskettealign
{ \begin{pmatrix} \sqrt{5} & 0 \\ 0 & - \sqrt{5} \end{pmatrix} }
{ =} { \begin{pmatrix} \frac{1}{2 } & \frac{ \sqrt{5} }{2} \\ \frac{1}{2 } & \frac{ -\sqrt{5} }{2} \end{pmatrix} \begin{pmatrix} \sqrt{5} & - \sqrt{5} \\ 1 & 1 \end{pmatrix} }
{ =} { \begin{pmatrix} \frac{1}{2 \sqrt{5} } & \frac{1}{2} \\ \frac{-1}{2 \sqrt{5} } & \frac{1}{2} \end{pmatrix} \begin{pmatrix} 0 & 5 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} \sqrt{5} & - \sqrt{5} \\ 1 & 1 \end{pmatrix} }
{ } { }
{ } {}
} {} {}{.}

}






\zwischenueberschrift{Multiplicities and diagonalizable matrices}




\inputfaktbeweisnichtvorgefuehrt
{Endomorphism/Diagonalizable/Algebraic and geometric multiplicity/Fact}
{Theorem}
{}
{

\faktsituation {Let $K$ denote a field, and let $V$ denote a finite-dimensional vector space. Let
\mathdisp {\varphi \colon V \longrightarrow V} { }
denote a linear mapping.}
\faktfolgerung {Then $\varphi$ is diagonalizable if and only if the characteristic polynomial $\chi_{ \varphi }$ is a product of linear factors and if for every zero $\lambda$ with algebraic multiplicity $\mu_\lambda$, the identity
\mavergleichskettedisp
{\vergleichskette
{ \mu_\lambda }
{ =} { \dim_{ } { \left( \operatorname{Eig}_{ \lambda } { \left( \varphi \right) } \right) } }
{ } { }
{ } { }
{ } { }
} {}{}{} holds.}
\faktzusatz {}

}
{Endomorphism/Diagonalizable/Algebraic and geometric multiplicity/Fact/Proof

}


The product of two diagonal matrices is again a diagonal matrix. The following example shows that the product of two diagonalizable matrices is in general not diagonalizable.


\inputbeispiel{}
{

Let \mathkor {} {G_1} {and} {G_2} {} denote two lines in $\R^2$ through the origin, and let \mathkor {} {\varphi_1} {and} {\varphi_2} {} denote the reflections at these axes. A reflection at an axis is always diagonalizable, the axis and the line orthogonal to the axis are eigenlines \zusatzklammer {with eigenvalues $1$ and $-1$} {} {.} The composition
\mavergleichskettedisp
{\vergleichskette
{ \psi }
{ =} { \varphi_2 \circ \varphi_1 }
{ } { }
{ } { }
{ } { }
} {}{}{} of the reflections is a plane rotation, the angle of rotation being twice the angle between the two lines. However, a rotation is only diagonalizable if the angle of rotation is \mathkor {} {0} {or} {180} {} degree. If the angle between the axes is different from \mathl{0,90}{} degree, then $\psi$ does not have any eigenvector.

}






\zwischenueberschrift{Trigonalizable mappings}




\inputdefinition
{ }
{

Let $K$ denote a field, and let $V$ denote a finite-dimensional vector space. A linear mapping $\varphi \colon V \rightarrow V$ is called \definitionswort {trigonalizable}{,} if there exists a basis such that the describing matrix of $\varphi$ with respect to this basis is an

upper triangular matrix.

}

Diagonalizable linear mappings are in particular trigonalizable. The reverse statement is not true, as Example 28.7 shows.




\inputfaktbeweisnichtvorgefuehrt
{Linear mapping/Trigonalizable/Characterization with characteristic polynomial/Fact}
{Theorem}
{}
{

\faktsituation {Let $K$ denote a field, and let $V$ denote an finite-dimensional vector space. Let
\mathdisp {\varphi \colon V \longrightarrow V} { }
denote a linear mapping.}
\faktuebergang {Then the following statements are equivalent.}
\faktfolgerung {\aufzaehlungzwei {$\varphi$ is trigonalizable. } {The characteristic polynomial $\chi_{ \varphi }$ has a factorization into linear factors. }}
\faktzusatz {If $\varphi$ is trigonalizable and is described by the matrix $M$ with respect to some basis, then there exists an invertible matrix
\mavergleichskette
{\vergleichskette
{B }
{ \in }{ \operatorname{Mat}_{ n \times n } (K) }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} such that \mathl{BMB^{-1}}{} is an upper triangular matrix.}

}
{Linear mapping/Trigonalizable/Characterization with characteristic polynomial/Fact/Proof

}





\inputfaktbeweis
{Square matrix/C/Trigonalizable/Fact}
{Theorem}
{}
{

\faktsituation {Let
\mavergleichskette
{\vergleichskette
{M }
{ \in }{\operatorname{Mat}_{ n \times n } (\Complex) }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} denote a square matrix with complex entries.}
\faktfolgerung {Then $M$ is trigonalizable.}
\faktzusatz {}

}
{

}