Other exercises
Let
K
{\displaystyle {}K}
be a field and let
A
{\displaystyle {}A}
be a
m
×
n
{\displaystyle {}m\times n}
-matrix and
B
{\displaystyle {}B}
a
n
×
p
{\displaystyle {}n\times p}
-matrix over
K
{\displaystyle {}K}
. Prove the following relationships concerning the rank
rk
A
B
≤
rk
A
and
rk
A
B
≤
rk
B
.
{\displaystyle \operatorname {rk} \,AB\leq \operatorname {rk} \,A{\text{ and }}\operatorname {rk} \,AB\leq \operatorname {rk} \,B.}
Prove that equality on the left occurs if
B
{\displaystyle {}B}
is invertible, and equality on the right occurs if
A
{\displaystyle {}A}
is invertible. Give an example of non-invertible matrices
A
{\displaystyle {}A}
and
B
{\displaystyle {}B}
such that equality on the left and on the right occurs.
Prove that the series
∑
n
=
1
∞
1
n
(
n
+
1
)
{\displaystyle \sum _{n=1}^{\infty }{\frac {1}{n(n+1)}}}
converges with sum equal to
1
{\displaystyle {}1}
.
Examine for each of the following subsets
M
⊆
Q
{\displaystyle {}M\subseteq \mathbb {Q} }
the concepts upper bound, lower bound, supremum, infimum, maximum and minimum.
{
2
,
−
3
,
−
4
,
5
,
6
,
−
1
,
1
}
{\displaystyle {}\{2,-3,-4,5,6,-1,1\}}
,
{
1
2
,
−
3
7
,
−
4
9
,
5
9
,
6
13
,
−
1
3
,
1
4
}
{\displaystyle {}\left\{{\frac {1}{2}},{\frac {-3}{7}},{\frac {-4}{9}},{\frac {5}{9}},{\frac {6}{13}},{\frac {-1}{3}},{\frac {1}{4}}\right\}}
,
]
−
5
,
2
]
{\displaystyle {}]-5,2]}
,
{
1
n
∣
n
∈
N
+
}
{\displaystyle {}{\left\{{\frac {1}{n}}\mid n\in \mathbb {N} _{+}\right\}}}
,
{
1
n
∣
n
∈
N
+
}
∪
{
0
}
{\displaystyle {}{\left\{{\frac {1}{n}}\mid n\in \mathbb {N} _{+}\right\}}\cup \{0\}}
,
Q
−
{\displaystyle {}\mathbb {Q} _{-}}
,
{
x
∈
Q
∣
x
2
≤
2
}
{\displaystyle {}{\left\{x\in \mathbb {Q} \mid x^{2}\leq 2\right\}}}
,
{
x
∈
Q
∣
x
2
≤
4
}
{\displaystyle {}{\left\{x\in \mathbb {Q} \mid x^{2}\leq 4\right\}}}
,
{
x
2
∣
x
∈
Z
}
{\displaystyle {}{\left\{x^{2}\mid x\in \mathbb {Z} \right\}}}
.
Explain why the factorial function is continuous.