Jump to content

Materials Science and Engineering/Glossary of Terms/Quantum Mechanics

From Wikiversity

Atom: In chemistry and physics, an atom (Greek ἄτομος or átomos meaning "the smallest indivisible particle of matter, i.e. something that cannot be divided") is the smallest particle still characterizing a chemical element.

An atom consists of a dense nucleus of positively charged protons and electrically neutral neutrons, surrounded by a much larger electron cloud consisting of negatively charged electrons. An atom is electrically neutral if it has the same number of protons as electrons. The number of protons in an atom defines the chemical element to which it belongs, while the number of neutrons determines the isotope of the element.

Black Body: In physics, a black body is an object that absorbs all electromagnetic radiation that falls onto it. No radiation passes through it and none is reflected. It is this lack of both transmission and reflection to which the name refers. These properties make black bodies ideal sources of thermal radiation. A blackbody is an abstract concept. It entails a system in which the thermal energy is carried via electromagnetic radiation. With this it is possible to approximate the temperature of the object through the wavelength of the light that is emitted. Black bodies above this temperature however, produce radiation at visible wavelengths starting at red, going through orange, yellow, and white before ending up at blue as the temperature increases.

The term "black body" was introduced by Gustav Kirchhoff in 1860. The light emitted by a black body is called black-body radiation (or cavity radiation), and has a special place in the history of quantum mechanics.

Copenhagen Interpretation: The Copenhagen interpretation is an interpretation of quantum mechanics, usually understood to state that every particle is described by its wavefunction, which dictates the probability for it to be found in any location following a measurement. Each measurement causes a change in the state of the particle, known as wavefunction collapse.

Ensemble Interpretation: The Ensemble Interpretation, or Statistical Interpretation of quantum mechanics, is an interpretation that can be viewed as a minimalist interpretation; it is a quantum mechanical interpretation that claims to make the fewest assumptions associated with the standard mathematical formalization. At its heart, it takes the statistical interpretation of Max Born to the fullest extent. The interpretation states that the wave function does not apply to an individual system – or for example, a single particle – but is an abstract mathematical, statistical quantity that only applies to an ensemble of similar prepared systems or particles. Probably the most notable supporter of such an interpretation was Albert Einstein:

"The attempt to conceive the quantum-theoretical description as the complete description of the individual systems leads to unnatural theoretical interpretations, which become immediately unnecessary if one accepts the interpretation that the description refers to ensembles of systems and not to individual systems."

Photon: In physics, the photon is the elementary particle responsible for electromagnetic phenomena. It is the carrier of electromagnetic radiation of all wavelengths, including gamma rays, X-rays, ultraviolet light, visible light, infrared light, microwaves, and radio waves. The photon differs from many other elementary particles, such as the electron and the quark, in that it has zero rest mass;[3] therefore, it travels (in vacuum) at the speed of light, c. Like all quanta, the photon has both wave and particle properties (“wave–particle duality”). Photons show wave-like phenomena, such as refraction by a lens and destructive interference when reflected waves cancel each other out; however, as a particle, it can only interact with matter by transferring the amount of energy

Quanta: In physics, a quantum (plural: quanta) is an indivisible entity of energy. A photon, for instance, being a unit of light, is a "light quantum." In combinations like "quantum mechanics", "quantum optics", etc., it distinguishes a more specialized field of study.

The word comes from the Latin "quantus," for "how much."

Behind this, one finds the fundamental notion that a physical property may be "quantized", referred to as "quantization". This means that the magnitude can take on only certain discrete numerical values, rather than any value, at least within a range. For example, the energy of an electron bound to an atom (at rest) is quantized. This accounts for the stability of atoms, and matter in general.

An entirely new conceptual framework was developed around this idea, during the first half of the 1900s. Usually referred to as quantum "mechanics", it is regarded by virtually every professional physicist as the most fundamental framework we have for understanding and describing nature, for the very practical reason that it works. It is "in the nature of things", not a more or less arbitrary human preference.

Spectra: A spectrum (plural spectra or spectrums) is a condition that is not limited to a specific set of values but can vary infinitely within a continuum. The word saw its first scientific use within the field of optics to describe the rainbow of colors in visible light when separated using a prism; it has since been applied by analogy to many fields.