The linear standard mappings
K
n
→
V
{\displaystyle {}K^{n}\rightarrow V}
and
K
m
→
W
{\displaystyle {}K^{m}\rightarrow W}
for the various bases are denoted by
Ψ
v
,
Ψ
u
,
Ψ
w
,
Ψ
z
{\displaystyle {}\Psi _{\mathfrak {v}},\,\Psi _{\mathfrak {u}},\,\Psi _{\mathfrak {w}},\,\Psi _{\mathfrak {z}}}
. We consider the
commutative diagram
K
n
⟶
M
w
v
(
φ
)
K
m
↘
Ψ
v
Ψ
w
↙
M
u
v
↓
V
⟶
φ
W
↓
M
z
w
↗
Ψ
u
Ψ
z
↖
K
n
⟶
M
z
u
(
φ
)
K
m
,
{\displaystyle {\begin{matrix}K^{n}&&&{\stackrel {M_{\mathfrak {w}}^{\mathfrak {v}}(\varphi )}{\longrightarrow }}&&&K^{m}\\&\searrow \Psi _{\mathfrak {v}}\!\!\!\!\!&&&&\Psi _{\mathfrak {w}}\swarrow \!\!\!\!\!&\\\!\!\!\!\!M_{\mathfrak {u}}^{\mathfrak {v}}\downarrow &&V&{\stackrel {\varphi }{\longrightarrow }}&W&&\,\,\,\,\downarrow M_{\mathfrak {z}}^{\mathfrak {w}}\\&\nearrow \Psi _{\mathfrak {u}}\!\!\!\!\!&&&&\Psi _{\mathfrak {z}}\nwarrow \!\!\!\!\!&\\K^{n}&&&{\stackrel {M_{\mathfrak {z}}^{\mathfrak {u}}(\varphi )}{\longrightarrow }}&&&K^{m},\!\!\!\!\!\end{matrix}}}
where the commutativity rests on
fact
and
fact .
In this situation, we have altogether
M
z
u
(
φ
)
=
Ψ
z
−
1
∘
φ
∘
Ψ
u
=
Ψ
z
−
1
∘
(
Ψ
w
∘
M
w
v
(
φ
)
∘
Ψ
v
−
1
)
∘
Ψ
u
=
(
Ψ
z
−
1
∘
Ψ
w
)
∘
M
w
v
(
φ
)
∘
(
Ψ
v
−
1
∘
Ψ
u
)
=
(
Ψ
z
−
1
∘
Ψ
w
)
∘
M
w
v
(
φ
)
∘
(
Ψ
u
−
1
∘
Ψ
v
)
−
1
=
M
z
w
∘
M
w
v
(
φ
)
∘
(
M
u
v
)
−
1
.
{\displaystyle {}{\begin{aligned}M_{\mathfrak {z}}^{\mathfrak {u}}(\varphi )&=\Psi _{\mathfrak {z}}^{-1}\circ \varphi \circ \Psi _{\mathfrak {u}}\\&=\Psi _{\mathfrak {z}}^{-1}\circ (\Psi _{\mathfrak {w}}\circ M_{\mathfrak {w}}^{\mathfrak {v}}(\varphi )\circ \Psi _{\mathfrak {v}}^{-1})\circ \Psi _{\mathfrak {u}}\\&=(\Psi _{\mathfrak {z}}^{-1}\circ \Psi _{\mathfrak {w}})\circ M_{\mathfrak {w}}^{\mathfrak {v}}(\varphi )\circ (\Psi _{\mathfrak {v}}^{-1}\circ \Psi _{\mathfrak {u}})\\&=(\Psi _{\mathfrak {z}}^{-1}\circ \Psi _{\mathfrak {w}})\circ M_{\mathfrak {w}}^{\mathfrak {v}}(\varphi )\circ (\Psi _{\mathfrak {u}}^{-1}\circ \Psi _{\mathfrak {v}})^{-1}\\&=M_{\mathfrak {z}}^{\mathfrak {w}}\circ M_{\mathfrak {w}}^{\mathfrak {v}}(\varphi )\circ (M_{\mathfrak {u}}^{\mathfrak {v}})^{-1}.\end{aligned}}}
◻
{\displaystyle \Box }
This follows directly from
fact .
◻
{\displaystyle \Box }
It is an important goal of linear algebra to find, for a given linear mapping
φ
:
V
→
V
{\displaystyle {}\varphi \colon V\rightarrow V}
,
a basis
v
=
v
1
,
…
,
v
n
{\displaystyle {}{\mathfrak {v}}=v_{1},\ldots ,v_{n}}
such that the describing matrix
M
v
v
(
φ
)
{\displaystyle {}M_{\mathfrak {v}}^{\mathfrak {v}}(\varphi )}
becomes "quite simple“.