History of Topics in Special Relativity/secsource
Appearance
Secondary sources
[edit | edit source]- Alizzi, A., Sen, A., & Silagadze, Z. K. (2022), "Do moving clocks slow down?", European Journal of Physics, 43 (6): 065601, arXiv:2209.12654, doi:10.1088/1361-6404/ac93ca
{{citation}}
: CS1 maint: multiple names: authors list (link)
- Baccetti, V.; Tate, K.; Visser, M. (2012), "Inertial frames without the relativity principle", Journal of High Energy Physics, 2012 (5): 119, arXiv:1112.1466, Bibcode:2012JHEP...05..119B, doi:10.1007/JHEP05(2012)119
- Bachmann, P. (1898), Die Arithmetik der quadratischen Formen. Erste Abtheilung, Leipzig: B.G. Teubner
- Bachmann, P. (1923), Die Arithmetik der quadratischen Formen. Zweite Abtheilung, Leipzig: B.G. Teubner
- Barnett, J. H. (2004), "Enter, stage center: The early drama of the hyperbolic functions" (PDF), Mathematics Magazine, 77 (1): 15–30, doi:10.1080/0025570x.2004.11953223
- Bôcher, M. (1907), "Quadratic forms", Introduction to higher algebra, New York: Macmillan
- Bondi, H. (1964), Relativity and Common Sense, New York: Doubleday & Company
- Bonola, R. (1912), Non-Euclidean geometry: A critical and historical study of its development, Chicago: Open Court
- Brown, H. R. (2001), "The origins of length contraction: I. The FitzGerald-Lorentz deformation hypothesis", American Journal of Physics, 69 (10): 1044–1054, arXiv:gr-qc/0104032, Bibcode:2001AmJPh..69.1044B, doi:10.1119/1.1379733 See also "Michelson, FitzGerald and Lorentz: the origins of relativity revisited", Online.
- Brown, H. R. (2005), Physical relativity: space-time structure from a dynamical perspective, Oxford University Press, ISBN 9780199275830
- Cartan, É.; Study, E. (1908), "Nombres complexes", Encyclopédie des Sciences Mathématiques Pures et Appliquées, 1.1: 328–468
- Cartan, É.; Fano, G. (1955) [1915], "La théorie des groupes continus et la géométrie", Encyclopédie des Sciences Mathématiques Pures et Appliquées, 3.1: 39–43 (Only pages 1–21 were published in 1915, the entire article including pp. 39–43 concerning the groups of Laguerre and Lorentz was posthumously published in 1955 in Cartan's collected papers, and was reprinted in the Encyclopédie in 1991.)
- Coolidge, J. (1916), A treatise on the circle and the sphere, Oxford: Clarendon Press
- Darrigol, O. (1995), "Emil Cohn's electrodynamics of moving bodies", American Journal of Physics, 63 (10): 908–915, Bibcode:1995AmJPh..63..908D, doi:10.1119/1.18032
- Darrigol, O. (2000), Electrodynamics from Ampère to Einstein, Oxford: Oxford Univ. Press, ISBN 978-0-19-850594-5
- Darrigol, O. (2005), "The Genesis of the theory of relativity" (PDF), Séminaire Poincaré, 1: 1–22, Bibcode:2006eins.book....1D, doi:10.1007/3-7643-7436-5_1, ISBN 978-3-7643-7435-8
- Debs, T. A., & Redhead, M. L. (1996), "The twin paradox and the conventionality of simultaneity", American Journal of Physics, 64 (1): 384–392, doi:10.1119/1.18252
{{citation}}
: CS1 maint: multiple names: authors list (link)
- Del Centina, A.; Fiocca, A. (2020), "Borelli's edition of books V–VII of Apollonius's Conics, and Lemma 12 in Newton's Principia", Archive for History of Exact Sciences, 74 (3): 255–279, doi:10.1007/s00407-019-00244-w
{{citation}}
: CS1 maint: multiple names: authors list (link)
- Dickson, L. E. (1923), History of the theory of numbers, Volume III, Quadratic and higher forms, Washington: Washington Carnegie Institution of Washington
- During, É. (2014), "Langevin ou le paradoxe introuvable", Revue de métaphysique et de morale, 84: 513–527, doi:10.3917/rmm.144.0513
- Fjelstad, P. (1986), "Extending special relativity via the perplex numbers", American Journal of Physics, 54 (5): 416–422, Bibcode:1986AmJPh..54..416g, doi:10.1119/1.14605
- Girard, P. R. (1984), "The quaternion group and modern physics", European Journal of Physics, 5 (1): 25–32, Bibcode:1984EJPh....5...25G, doi:10.1088/0143-0807/5/1/007
- Gray, J. (1979), "Non-euclidean geometry—A re-interpretation", Historia Mathematica, 6 (3): 236–258, doi:10.1016/0315-0860(79)90124-1
- Gray, J.; Scott W. (1997), "Introduction" (PDF), Trois suppléments sur la découverte des fonctions fuchsiennes (PDF), Berlin, pp. 7–28
{{citation}}
: CS1 maint: location missing publisher (link)
- Hawkins, T. (2013), "The Cayley–Hermite problem and matrix algebra", The Mathematics of Frobenius in Context: A Journey Through 18th to 20th Century Mathematics, Springer, ISBN 978-1461463337
- Janssen, M. (1995), A Comparison between Lorentz's Ether Theory and Special Relativity in the Light of the Experiments of Trouton and Noble (Thesis): TOC, IntroPart1, Chapter1, Chapter2, IntroPart2, Chapter3, Chapter4, References
- Kastrup, H. A. (2008), "On the advancements of conformal transformations and their associated symmetries in geometry and theoretical physics", Annalen der Physik, 520 (9–10): 631–690, arXiv:0808.2730, Bibcode:2008AnP...520..631K, doi:10.1002/andp.200810324
- Katzir, S. (2005), "Poincaré's Relativistic Physics: Its Origins and Nature", Physics in Perspective, 7 (3): 268–292, Bibcode:2005PhP.....7..268K, doi:10.1007/s00016-004-0234-y
- Kittel, C. (1974), "Larmor and the prehistory of the Lorentz transformations", American Journal of Physics, 42 (9): 726–729, doi:10.1119/1.1987825
- Klein, F.; Blaschke, Wilhelm (1926), Vorlesungen über höhere Geometrie, Berlin: Springer
- Klein, F. (1928), Rosemann, W. (ed.), Vorlesungen über nicht-Euklidische Geometrie, Berlin: Springer
- Könneker, C. (2001), Auflösung der Natur – Auflösung der Geschichte, Stuttgart: J.B. Metzler, doi:10.1007/978-3-476-02773-3, ISBN 978-3-476-45262-7
- von Laue, M. (1921), Die Relativitätstheorie, Band 1 (fourth edition of "Das Relativitätsprinzip" ed.), Vieweg; First edition 1911, second expanded edition 1913, third expanded edition 1919.
- Lorente, M. (2003), "Representations of classical groups on the lattice and its application to the field theory on discrete space-time", Symmetries in Science, VI: 437–454, arXiv:hep-lat/0312042, Bibcode:2003hep.lat..12042L
- Macrossan, M. N. (1986), "A Note on Relativity Before Einstein", The British Journal for the Philosophy of Science, 37 (2): 232–234, CiteSeerX 10.1.1.679.5898, doi:10.1093/bjps/37.2.232
- Majerník, V. (1986), "Representation of relativistic quantities by trigonometric functions", American Journal of Physics, 54 (6): 536–538, doi:10.1119/1.14557
- Meyer, W.F. (1899), "Invariantentheorie", Encyclopädie der Mathematischen Wissenschaften, 1.1: 322–455
- Miller, A. I. (1981), Albert Einstein's special theory of relativity. Emergence (1905) and early interpretation (1905–1911), Reading: Addison–Wesley, ISBN 978-0-201-04679-3
- Møller, C. (1955) [1952], The theory of relativity, Oxford Clarendon Press
- Müller, E. (1910), "Die verschiedenen Koordinatensysteme", Encyclopädie der Mathematischen Wissenschaften, 3.1.1: 596–770
- Musen, P. (1970), "A Discussion of Hill's Method of Secular Perturbations...", Celestial Mechanics, 2 (1): 41–59, Bibcode:1970CeMec...2...41M, doi:10.1007/BF01230449, hdl:2060/19700018328
- Naimark,M. A. (2014) [1964], Linear Representations of the Lorentz Group, Oxford, ISBN 978-1483184982
{{citation}}
: CS1 maint: location missing publisher (link) - Pacheco, R. (2008), "Bianchi–Bäcklund transforms and dressing actions, revisited.", Geometriae Dedicata, 146 (1): 85–99, arXiv:0808.4138, doi:10.1007/s10711-009-9427-5
- Pauli, W. (1921), "Die Relativitätstheorie", Encyclopädie der Mathematischen Wissenschaften, 5 (2): 539–776
- English translation: Pauli, W. (1981) [1958], "Theory of Relativity", Fundamental Theories of Physics, Dover Publications, 165, ISBN 978-0-486-64152-2
- Pais, A. (1982), Subtle is the Lord: The Science and the Life of Albert Einstein, New York: Oxford University Press, ISBN 978-0-19-520438-4
- Penrose, R.; Rindler W. (1984), Spinors and Space-Time: Volume 1, Two-Spinor Calculus and Relativistic Fields, Cambridge University Press, ISBN 978-0521337076
- Pesic, P. (2003), "Einstein and the twin paradox", European Journal of Physics, 24 (6): 585–590, doi:10.1088/0143-0807/24/6/004
- Ratcliffe, J. G. (1994), "Hyperbolic geometry", Foundations of Hyperbolic Manifolds, New York, pp. 56–104, ISBN 978-0387943480
{{citation}}
: CS1 maint: location missing publisher (link)
- Reynolds, W. F. (1993), "Hyperbolic geometry on a hyperboloid", The American Mathematical Monthly, 100 (5): 442–455, doi:10.1080/00029890.1993.11990430, JSTOR 2324297
- Rindler, W. (1970), "Einstein's priority in recognizing time dilation physically", American Journal of Physics, 38 (9): 1111–1115, doi:10.1119/1.1976561
- Rindler, W. (2013) [1969], Essential Relativity: Special, General, and Cosmological, Springer, ISBN 978-1475711356
- Robinson, E.A. (1990), Einstein's relativity in metaphor and mathematics, Prentice Hall, ISBN 9780132464970
- Rosenfeld, B.A. (1988), A History of Non-Euclidean Geometry: Evolution of the Concept of a Geometric Space, New York: Springer, ISBN 978-1441986801
- Rothe, H. (1916), "Systeme geometrischer Analyse", Encyclopädie der Mathematischen Wissenschaften, 3.1.1: 1282–1425
- Schlick, M. (1920), Raum und Zeit in der gegenwärtigen Physik (3 ed.), Springer; The footnote concerning Cohn is not present in H. Brose's English translation "Space and time in contemporary physics" (1920).
- Schottenloher, M. (2008), A Mathematical Introduction to Conformal Field Theory, Springer, ISBN 978-3540706908
- Silberstein, L. (1914), The Theory of Relativity, London: Macmillan
- Sobczyk, G. (1995), "The Hyperbolic Number Plane", The College Mathematics Journal, 26 (4): 268–280, doi:10.2307/2687027, JSTOR 2687027
- Sommerville, D. M. L. Y. (1911), Bibliography of non-Euclidean geometry, London: London Pub. by Harrison for the University of St. Andrews
- Synge, J. L. (1956), Relativity: The Special Theory, North Holland
- Synge, J.L. (1972), "Quaternions, Lorentz transformations, and the Conway–Dirac–Eddington matrices", Communications of the Dublin Institute for Advanced Studies, 21
- Terng, C. L., & Uhlenbeck, K. (2000), "Geometry of solitons" (PDF), Notices of AMS, 47 (1): 17–25
{{citation}}
: CS1 maint: multiple names: authors list (link)
- Touma, J. R., Tremaine, S., & Kazandjian, M. V. (2009), "Gauss's method for secular dynamics, softened", Monthly Notices of the Royal Astronomical Society, 394 (2): 1085–1108, arXiv:0811.2812, doi:10.1111/j.1365-2966.2009.14409.x
{{citation}}
: CS1 maint: multiple names: authors list (link)
- Volk, O. (1976), "Miscellanea from the history of celestial mechanics", Celestial mechanics, 14 (3): 365–382, Bibcode:1976CeMec..14..365V, doi:10.1007/bf01228523
- Walter, S. A. (1999a), "Minkowski, mathematicians, and the mathematical theory of relativity", in H. Goenner; J. Renn; J. Ritter; T. Sauer (eds.), The Expanding Worlds of General Relativity – Einstein Studies, vol. 7, Boston: Birkhäuser, pp. 45–86, ISBN 978-0-8176-4060-6
- Walter, S. A. (1999b), "The non-Euclidean style of Minkowskian relativity", in J. Gray (ed.), The Symbolic Universe: Geometry and Physics, Oxford: Oxford University Press, pp. 91–127
- Walter, S. A. (2014), "Poincaré on clocks in motion", Studies in History and Philosophy of Modern Physics, 47 (1): 131–141, doi:10.1016/j.shpsb.2014.01.003
- Walter, S. A. (2018), "Figures of light in the early history of relativity", in Rowe D.; Sauer T.; Walter S. (eds.), Beyond Einstein - Einstein Studies, vol. 14, New York: Birkhäuser, pp. 3–50, doi:10.1007/978-1-4939-7708-6_1, ISBN 978-1-4939-7708-6