In detail, these elementary matrices look as follows.
V
i
j
=
(
1
0
⋯
⋯
⋯
⋯
0
⋮
⋱
⋯
⋯
⋯
⋯
⋮
0
⋯
0
⋯
1
⋯
0
⋮
⋯
⋯
1
⋯
⋯
⋮
0
⋯
1
⋯
0
⋯
0
⋮
⋯
⋯
⋯
⋯
⋱
⋮
0
⋯
⋯
⋯
⋯
0
1
)
.
{\displaystyle {}V_{ij}={\begin{pmatrix}1&0&\cdots &\cdots &\cdots &\cdots &0\\\vdots &\ddots &\cdots &\cdots &\cdots &\cdots &\vdots \\0&\cdots &0&\cdots &1&\cdots &0\\\vdots &\cdots &\cdots &1&\cdots &\cdots &\vdots \\0&\cdots &1&\cdots &0&\cdots &0\\\vdots &\cdots &\cdots &\cdots &\cdots &\ddots &\vdots \\0&\cdots &\cdots &\cdots &\cdots &0&1\end{pmatrix}}\,.}
S
k
(
s
)
=
(
1
0
⋯
⋯
⋯
⋯
0
⋮
⋱
⋱
⋮
⋮
⋮
⋮
0
⋯
1
0
⋯
⋯
0
0
⋯
0
s
0
⋯
0
0
⋯
⋯
0
1
⋯
0
⋮
⋮
⋮
⋮
⋱
⋱
⋮
0
⋯
⋯
⋯
⋯
0
1
)
.
{\displaystyle {}S_{k}(s)={\begin{pmatrix}1&0&\cdots &\cdots &\cdots &\cdots &0\\\vdots &\ddots &\ddots &\vdots &\vdots &\vdots &\vdots \\0&\cdots &1&0&\cdots &\cdots &0\\0&\cdots &0&s&0&\cdots &0\\0&\cdots &\cdots &0&1&\cdots &0\\\vdots &\vdots &\vdots &\vdots &\ddots &\ddots &\vdots \\0&\cdots &\cdots &\cdots &\cdots &0&1\end{pmatrix}}\,.}
A
i
j
(
a
)
=
(
1
0
⋯
⋯
⋯
⋯
0
⋮
⋱
⋯
⋯
⋯
⋯
⋮
0
⋯
1
⋯
a
⋯
0
⋮
⋯
⋯
⋱
⋯
⋯
⋮
0
⋯
⋯
⋯
1
⋯
0
⋮
⋯
⋯
⋯
⋯
⋱
⋮
0
⋯
⋯
⋯
⋯
0
1
)
.
{\displaystyle {}A_{ij}(a)={\begin{pmatrix}1&0&\cdots &\cdots &\cdots &\cdots &0\\\vdots &\ddots &\cdots &\cdots &\cdots &\cdots &\vdots \\0&\cdots &1&\cdots &a&\cdots &0\\\vdots &\cdots &\cdots &\ddots &\cdots &\cdots &\vdots \\0&\cdots &\cdots &\cdots &1&\cdots &0\\\vdots &\cdots &\cdots &\cdots &\cdots &\ddots &\vdots \\0&\cdots &\cdots &\cdots &\cdots &0&1\end{pmatrix}}\,.}
Elementary matrices are invertible, see
exercise .
Proof
◻
{\displaystyle \Box }
Elementary row operations do not change the solution space of a homogeneous linear system, as shown in
fact .