Exercise 7: Answers
KCL @ Node b:
i
2
=
i
1
+
i
6
{\displaystyle i_{2}=i_{1}+i_{6}}
Thus by applying Ohms law to above equation we get.
V
c
−
V
b
R
2
−
V
b
R
1
−
V
b
−
V
d
R
6
=
0
{\displaystyle {\begin{matrix}\ {\frac {V_{c}-V_{b}}{R_{2}}}-{\frac {V_{b}}{R_{1}}}-{\frac {V_{b}-V_{d}}{R_{6}}}=0\end{matrix}}}
Therefore
−
V
b
(
1
R
1
+
1
R
2
+
1
R
6
)
+
V
c
(
1
R
2
)
+
V
d
(
1
R
6
)
=
0
{\displaystyle {\begin{matrix}\ \ -V_{b}({\frac {1}{R_{1}}}+{\frac {1}{R_{2}}}+{\frac {1}{R_{6}}})+V_{c}({\frac {1}{R_{2}}})+V_{d}({\frac {1}{R_{6}}})=0\end{matrix}}}
............... (1)
KCL @ Node c:
i
3
=
i
2
+
i
4
{\displaystyle i_{3}=i_{2}+i_{4}}
Thus by applying Ohms law to above equation we get.
V
s
−
V
c
R
3
−
V
c
−
V
b
R
2
−
V
c
−
V
d
R
4
=
0
{\displaystyle {\begin{matrix}\ {\frac {V_{s}-V_{c}}{R_{3}}}-{\frac {V_{c}-V_{b}}{R_{2}}}-{\frac {V_{c}-V_{d}}{R_{4}}}=0\end{matrix}}}
Therefore
−
V
b
(
1
R
2
)
−
V
c
(
(
1
R
2
+
1
R
3
+
1
R
4
)
+
V
d
(
1
R
4
)
=
V
s
R
3
{\displaystyle {\begin{matrix}\ \ -V_{b}({\frac {1}{R_{2}}})-V_{c}(({\frac {1}{R_{2}}}+{\frac {1}{R_{3}}}+{\frac {1}{R_{4}}})+V_{d}({\frac {1}{R_{4}}})={\frac {V_{s}}{R_{3}}}\end{matrix}}}
............... (2)
KCL @ Node d:
i
5
=
i
4
+
i
6
{\displaystyle i_{5}=i_{4}+i_{6}}
Thus by applying Ohms law to above equation we get.
V
s
−
V
c
R
3
−
V
c
−
V
b
R
2
−
V
c
−
V
d
R
4
{\displaystyle {\begin{matrix}\ {\frac {V_{s}-V_{c}}{R_{3}}}-{\frac {V_{c}-V_{b}}{R_{2}}}-{\frac {V_{c}-V_{d}}{R_{4}}}\end{matrix}}}
Therefore
−
V
b
(
1
R
3
)
−
V
c
(
1
R
4
)
+
V
d
(
1
R
3
+
1
R
4
−
1
R
5
)
=
0
{\displaystyle {\begin{matrix}\ \ -V_{b}({\frac {1}{R_{3}}})-V_{c}({\frac {1}{R_{4}}})+V_{d}({\frac {1}{R_{3}}}+{\frac {1}{R_{4}}}-{\frac {1}{R_{5}}})=0\end{matrix}}}
............... (3)
G
1
=
1
R
1
{\displaystyle G_{1}={\frac {1}{R_{1}}}}
etc thus equations 1; 2 & 3 will be re-written as follows:
V
b
(
−
G
1
−
G
2
−
G
6
)
+
V
c
(
G
2
)
+
V
d
(
G
6
)
=
0....
(
1
)
V
b
(
−
G
2
)
+
V
c
(
G
2
+
G
3
+
G
4
)
+
V
d
(
−
G
4
)
=
(
V
s
×
G
3
)
.
.
.
.
(
2
)
V
b
(
−
G
3
)
+
V
c
(
−
G
4
)
+
V
d
(
G
3
+
G
4
+
G
5
)
=
0....
(
3
)
{\displaystyle {\begin{matrix}\ V_{b}(-G_{1}-G_{2}-G_{6})+V_{c}(G_{2})+V_{d}(G_{6})&=&0....(1)\\\ \\\ V_{b}(-G_{2})+V_{c}(G_{2}+G_{3}+G_{4})+V_{d}(-G_{4})&=&(V_{s}\times G_{3})....(2)\\\ \\\ V_{b}(-G_{3})+V_{c}(-G_{4})+V_{d}(G_{3}+G_{4}+G_{5})&=&0....(3)\end{matrix}}}
Now we can create a matrix with the above equations as follows:
[
(
−
G
1
−
G
2
−
G
6
)
(
G
2
)
(
G
6
)
(
−
G
2
)
(
G
2
+
G
3
+
G
4
)
(
−
G
4
)
(
−
G
4
)
(
G
4
)
(
G
3
+
G
4
+
G
5
)
]
.
[
V
b
V
c
V
d
]
=
[
0
V
s
×
G
3
0
]
{\displaystyle {\begin{bmatrix}(-G_{1}-G_{2}-G_{6})&(G_{2})&(G_{6})\\(-G_{2})&(G_{2}+G_{3}+G_{4})&(-G_{4})\\(-G_{4})&(G_{4})&(G_{3}+G_{4}+G_{5})\end{bmatrix}}.{\begin{bmatrix}V_{b}\\V_{c}\\V_{d}\end{bmatrix}}={\begin{bmatrix}0\\V_{s}\times G_{3}\\0\end{bmatrix}}}
The following matrix is the above with values substituted:
A
.
X
→
=
Y
→
{\displaystyle A.{\vec {X}}={\vec {Y}}}
→
[
−
0.056
0.05
0.001
−
0.05
0.0503
−
0.0002
−
0.0001
−
0.0002
0.000367
]
.
[
V
b
V
c
V
d
]
=
[
0
0.0009
0
]
{\displaystyle {\begin{bmatrix}-0.056&0.05&0.001\\-0.05&0.0503&-0.0002\\-0.0001&-0.0002&0.000367\end{bmatrix}}.{\begin{bmatrix}V_{b}\\V_{c}\\V_{d}\end{bmatrix}}={\begin{bmatrix}0\\0.0009\\0\end{bmatrix}}}
Now that we have arranged equations 1; 2 & 3 into a matrix we need to get Determinants of the General matrix, and Determinants of alterations of the general matrix as follows:
Solving determinants of:
Matrix A : General matrix A from KCL equations
Matrix A1 : Genral Matrix A with Column 1 substituted by
Y
→
{\displaystyle {\vec {Y}}}
.
Matrix A2 : Genral Matrix A with Column 2 substituted by
Y
→
{\displaystyle {\vec {Y}}}
.
Matrix A3 : Genral Matrix A with Column 3 substituted by
Y
→
{\displaystyle {\vec {Y}}}
.
As follows:
d
e
t
A
=
−
9.8
×
10
−
8
{\displaystyle detA=-9.8\times 10^{-8}}
d
e
t
A
1
=
−
1.7
×
10
−
8
{\displaystyle detA1=-1.7\times 10^{-8}}
d
e
t
A
2
=
−
1.8
×
10
−
8
{\displaystyle detA2=-1.8\times 10^{-8}}
d
e
t
A
3
=
−
1.5
×
10
−
8
{\displaystyle detA3=-1.5\times 10^{-8}}
Now we can use the solved determinants to arrive at solutions for Node voltages
V
b
;
V
c
a
n
d
V
d
{\displaystyle V_{b};V_{c}andV_{d}}
as follows:
1.
V
b
=
d
e
t
A
1
d
e
t
A
=
0.17
V
{\displaystyle V_{b}={\frac {detA1}{detA}}=0.17V}
2.
V
c
=
d
e
t
A
2
d
e
t
A
=
0.19
V
{\displaystyle V_{c}={\frac {detA2}{detA}}=0.19V}
3.
V
d
=
d
e
t
A
3
d
e
t
A
=
0.15
V
{\displaystyle V_{d}={\frac {detA3}{detA}}=0.15V}
Now we can apply Ohm's law to solve for the current through
R
3
{\displaystyle R_{3}}
as follows:
I
R
3
=
V
s
−
V
c
R
3
=
9
V
−
0.19
V
10
k
Ω
=
0.881
m
A
{\displaystyle I_{R_{3}}={\frac {V_{s}-V_{c}}{R_{3}}}={\frac {9V-0.19V}{10k\Omega }}=0.881mA}