Given:
A strain gage rosette provides the following data
ε
1
=
0.01
;
ε
2
=
0.02
;
ε
30
o
=
0
{\displaystyle \varepsilon _{1}=0.01;~~\varepsilon _{2}=0.02;~~\varepsilon _{30^{o}}=0}
where the
X
1
{\displaystyle X_{1}}
and
X
2
{\displaystyle X_{2}}
directions are perpendicular to each other and
ε
30
o
{\displaystyle \varepsilon _{30^{o}}}
is the extensional strain of a line element at an angle of
30
o
{\displaystyle 30^{o}}
to the
X
1
{\displaystyle X_{1}}
axis (in the counterclockwise direction).
Find:
(a) Compute
ε
60
o
{\displaystyle \varepsilon _{60^{o}}}
.
(b) Is the result valid if the material is anisotropic ?
From the previous problem, for an angle of rotation of 30
o
{\displaystyle ^{o}}
, the rotation matrix
[
L
]
{\displaystyle \left[L\right]}
is
l
i
j
=
[
L
]
=
[
3
/
2
1
/
2
0
−
1
/
2
3
/
2
0
0
0
1
]
{\displaystyle l_{ij}=\left[L\right]={\begin{bmatrix}{\sqrt {3}}/2&1/2&0\\-1/2&{\sqrt {3}}/2&0\\0&0&1\end{bmatrix}}}
Therefore, the components of strain in the rotated co-ordinate system are given by
[
ε
]
′
=
[
L
]
[
ε
]
[
L
]
T
or,
ε
i
j
′
=
l
i
p
l
j
q
ε
p
q
{\displaystyle \left[{\boldsymbol {\varepsilon }}\right]^{'}=\left[L\right]\left[{\boldsymbol {\varepsilon }}\right]\left[L\right]^{T}~~{\text{or,}}~~\varepsilon _{ij}^{'}=l_{ip}l_{jq}\varepsilon _{pq}}
Since we are given
ε
30
o
=
ε
11
′
{\displaystyle \varepsilon _{30^{o}}=\varepsilon _{11}^{'}}
, we will calculate the value of this strain in terms of the original components of strain. Thus,
ε
11
′
=
l
1
p
l
1
q
ε
p
q
=
l
11
l
11
ε
11
+
l
12
l
11
ε
21
+
l
13
l
11
ε
31
+
l
11
l
12
ε
12
+
l
12
l
12
ε
22
+
l
13
l
12
ε
32
+
l
11
l
13
ε
13
+
l
12
l
13
ε
23
+
l
13
l
13
ε
33
=
l
11
(
l
11
ε
11
+
l
12
ε
12
+
l
13
ε
13
)
+
l
12
(
l
11
ε
21
+
l
12
ε
22
+
l
13
ε
23
)
+
l
13
(
l
11
ε
31
+
l
12
ε
32
+
l
13
ε
33
)
=
(
3
2
)
[
(
3
2
)
(
0.01
)
+
(
1
2
)
ε
12
]
+
(
1
2
)
[
(
3
2
)
ε
12
+
(
1
2
)
(
0.02
)
]
=
(
3
/
4
)
(
0.01
)
+
(
3
/
2
)
ε
12
+
(
1
/
4
)
(
0.02
)
=
(
5
/
4
)
(
0.01
)
+
(
3
/
2
)
ε
12
{\displaystyle {\begin{aligned}\varepsilon _{11}^{'}=&l_{1p}l_{1q}\varepsilon _{pq}\\=&l_{11}l_{11}\varepsilon _{11}+l_{12}l_{11}\varepsilon _{21}+l_{13}l_{11}\varepsilon _{31}+l_{11}l_{12}\varepsilon _{12}+l_{12}l_{12}\varepsilon _{22}+l_{13}l_{12}\varepsilon _{32}+\\&l_{11}l_{13}\varepsilon _{13}+l_{12}l_{13}\varepsilon _{23}+l_{13}l_{13}\varepsilon _{33}\\=&l_{11}(l_{11}\varepsilon _{11}+l_{12}\varepsilon _{12}+l_{13}\varepsilon _{13})+l_{12}(l_{11}\varepsilon _{21}+l_{12}\varepsilon _{22}+l_{13}\varepsilon _{23})+\\&l_{13}(l_{11}\varepsilon _{31}+l_{12}\varepsilon _{32}+l_{13}\varepsilon _{33})\\=&({\frac {\sqrt {3}}{2}})\left[({\frac {\sqrt {3}}{2}})(0.01)+({\frac {1}{2}})\varepsilon _{12}\right]+({\frac {1}{2}})\left[({\frac {\sqrt {3}}{2}})\varepsilon _{12}+({\frac {1}{2}})(0.02)\right]\\=&(3/4)(0.01)+({\sqrt {3}}/2)\varepsilon _{12}+(1/4)(0.02)\\=&(5/4)(0.01)+({\sqrt {3}}/2)\varepsilon _{12}\end{aligned}}}
Therefore,
(
5
/
4
)
(
0.01
)
+
(
3
/
2
)
ε
12
=
ε
30
o
=
0
{\displaystyle (5/4)(0.01)+({\sqrt {3}}/2)\varepsilon _{12}=\varepsilon _{30^{o}}=0}
Hence,
ε
12
=
−
(
2.5
)
(
0.01
)
/
3
{\displaystyle \varepsilon _{12}=-(2.5)(0.01)/{\sqrt {3}}}
Next, for an angle of rotation of 60
o
{\displaystyle ^{o}}
, the matrix
[
L
]
{\displaystyle \left[L\right]}
is
[
L
]
=
[
cos
(
60
o
)
sin
(
60
o
)
cos
(
90
o
)
−
sin
(
60
o
)
cos
(
60
o
)
cos
(
90
o
)
cos
(
90
o
)
cos
(
90
o
)
cos
(
0
o
)
]
=
[
1
/
2
3
/
2
0
−
3
/
2
1
/
2
0
0
0
1
]
{\displaystyle {\begin{aligned}\left[L\right]&={\begin{bmatrix}\cos(60^{o})&\sin(60^{o})&\cos(90^{o})\\-\sin(60^{o})&\cos(60^{o})&\cos(90^{o})\\\cos(90^{o})&\cos(90^{o})&\cos(0^{o})\end{bmatrix}}\\&={\begin{bmatrix}1/2&{\sqrt {3}}/2&0\\-{\sqrt {3}}/2&1/2&0\\0&0&1\end{bmatrix}}\end{aligned}}}
Therefore,
ε
60
o
=
ε
11
′
{\displaystyle \varepsilon _{60^{o}}=\varepsilon _{11}^{'}}
, is given by
ε
11
′
=
l
1
p
l
1
q
ε
p
q
=
l
11
l
11
ε
11
+
l
12
l
11
ε
21
+
l
13
l
11
ε
31
+
l
11
l
12
ε
12
+
l
12
l
12
ε
22
+
l
13
l
12
ε
32
+
l
11
l
13
ε
13
+
l
12
l
13
ε
23
+
l
13
l
13
ε
33
=
l
11
(
l
11
ε
11
+
l
12
ε
12
+
l
13
ε
13
)
+
l
12
(
l
11
ε
21
+
l
12
ε
22
+
l
13
ε
23
)
+
l
13
(
l
11
ε
31
+
l
12
ε
32
+
l
13
ε
33
)
=
(
1
2
)
[
(
1
2
)
(
0.01
)
+
(
3
2
)
ε
12
]
+
(
3
2
)
[
(
1
2
)
ε
12
+
(
3
2
)
(
0.02
)
]
=
(
1
/
4
)
(
0.01
)
+
(
3
/
2
)
ε
12
+
(
3
/
4
)
(
0.02
)
=
(
7
/
4
)
(
0.01
)
+
(
3
/
2
)
(
−
(
2.5
)
(
0.01
)
/
3
)
=
(
7
/
4
)
(
0.01
)
−
(
5
/
4
)
(
0.01
)
=
(
1
/
2
)
(
0.01
)
=
0.005
{\displaystyle {\begin{aligned}\varepsilon _{11}^{'}=&l_{1p}l_{1q}\varepsilon _{pq}\\=&l_{11}l_{11}\varepsilon _{11}+l_{12}l_{11}\varepsilon _{21}+l_{13}l_{11}\varepsilon _{31}+l_{11}l_{12}\varepsilon _{12}+l_{12}l_{12}\varepsilon _{22}+l_{13}l_{12}\varepsilon _{32}+\\&l_{11}l_{13}\varepsilon _{13}+l_{12}l_{13}\varepsilon _{23}+l_{13}l_{13}\varepsilon _{33}\\=&l_{11}(l_{11}\varepsilon _{11}+l_{12}\varepsilon _{12}+l_{13}\varepsilon _{13})+l_{12}(l_{11}\varepsilon _{21}+l_{12}\varepsilon _{22}+l_{13}\varepsilon _{23})+\\&l_{13}(l_{11}\varepsilon _{31}+l_{12}\varepsilon _{32}+l_{13}\varepsilon _{33})\\=&({\frac {1}{2}})\left[({\frac {1}{2}})(0.01)+({\frac {\sqrt {3}}{2}})\varepsilon _{12}\right]+({\frac {\sqrt {3}}{2}})\left[({\frac {1}{2}})\varepsilon _{12}+({\frac {\sqrt {3}}{2}})(0.02)\right]\\=&(1/4)(0.01)+({\sqrt {3}}/2)\varepsilon _{12}+(3/4)(0.02)\\=&(7/4)(0.01)+({\sqrt {3}}/2)(-(2.5)(0.01)/{\sqrt {3}})\\=&(7/4)(0.01)-(5/4)(0.01)=(1/2)(0.01)=0.005\\\end{aligned}}}
Therefore,
ε
60
o
=
0.005
{\displaystyle {\varepsilon _{60^{o}}=0.005}}
The result is valid for all materials.
{\displaystyle {\text{The result is valid for all materials.}}}