Consider the torsion of a prismatic bar having an elliptical cross-section as shown in the figure below.
Torsion of bar with elliptical c.s.
The bar is subjected to equal and opposite torques
T
{\displaystyle T}
at the two ends which cause a twist per unit length of
α
{\displaystyle \alpha }
in the bar.
The equation of the boundary of the cross section is
x
2
a
2
+
y
2
b
2
−
1
=
0
{\displaystyle {\frac {x^{2}}{a^{2}}}+{\frac {y^{2}}{b^{2}}}-1=0}
Since the Prandtl stress function
ϕ
{\displaystyle \phi }
is zero on the boundary of the cross-section of a simply connected prismatic bar, we can choose the Prandtl stress function for the bar with an elliptic cross-section to be
ϕ
=
C
[
x
2
a
2
+
y
2
b
2
−
1
]
{\displaystyle \phi =C\left[{\frac {x^{2}}{a^{2}}}+{\frac {y^{2}}{b^{2}}}-1\right]}
(a) Determine the value of the constant
C
{\displaystyle C}
.
(b) Express the twist per unit length (
α
{\displaystyle \alpha }
) in terms of the applied torque (
T
{\displaystyle T}
).
You will find the following results useful in evaluating the integral.
If
f
(
x
)
is an even function of
x
, then
∫
−
a
a
f
(
x
)
d
x
=
2
∫
0
a
f
(
x
)
d
x
{\displaystyle {\text{If}}~f(x)~{\text{is an even function of}}~x~{\text{, then}}~\int _{-a}^{a}f(x)dx=2\int _{0}^{a}f(x)dx}
1
2
∫
−
a
a
(
a
2
−
x
2
)
n
/
2
d
x
=
1
.
3
.
5
…
n
2
.
4
.
6
…
(
n
+
1
)
.
π
2
.
a
(
n
+
1
)
if
n
is odd
{\displaystyle {\frac {1}{2}}\int _{-a}^{a}(a^{2}-x^{2})^{n/2}dx={\frac {1~.~3~.~5~\dots ~n}{2~.~4~.~6~\dots ~(n+1)}}~.~{\frac {\pi }{2}}~.~a^{(n+1)}~~~{\text{if}}~n~{\text{is odd}}}
(c) What is the torsion constant of the section?
(d) Express the maximum shear stress in the bar in terms of
T
{\displaystyle T}
,
a
{\displaystyle a}
and
b
{\displaystyle b}
.
The Prandtl stress function must satisfy the compatibility condition
∇
2
ϕ
=
−
2
μ
α
⇒
ϕ
,
11
+
ϕ
,
22
=
−
2
μ
α
{\displaystyle \nabla ^{2}{\phi }=-2\mu \alpha ~~\Rightarrow ~~\phi _{,11}+\phi _{,22}=-2\mu \alpha }
Plugging in the stress function, we have,
C
[
2
a
2
+
2
b
2
]
=
−
2
μ
α
{\displaystyle C\left[{\frac {2}{a^{2}}}+{\frac {2}{b^{2}}}\right]=-2\mu \alpha }
or,
C
=
−
μ
α
a
2
b
2
a
2
+
b
2
{\displaystyle {C=-{\frac {\mu \alpha ~a^{2}~b^{2}}{a^{2}+b^{2}}}}}
The torque for a simply connected section is given by
T
=
2
∫
S
ϕ
d
A
{\displaystyle T=2\int _{\mathcal {S}}\phi ~dA}
For the elliptical cross-section, we have
T
=
2
∫
−
a
a
[
∫
−
b
(
1
−
x
2
/
a
2
)
b
(
1
−
x
2
/
a
2
)
C
(
x
2
a
2
+
y
2
b
2
−
1
)
d
y
]
d
x
=
2
C
∫
−
a
a
[
|
x
2
y
a
2
+
y
3
3
b
2
−
y
|
−
b
(
1
−
x
2
/
a
2
)
b
(
1
−
x
2
/
a
2
)
]
d
x
=
2
C
∫
−
a
a
[
|
y
[
y
2
3
b
2
−
(
1
−
x
2
a
2
)
]
|
−
b
(
1
−
x
2
/
a
2
)
b
(
1
−
x
2
/
a
2
)
]
d
x
=
2
C
∫
−
a
a
2
b
(
1
−
x
2
a
2
)
[
1
3
(
1
−
x
2
a
2
)
−
(
1
−
x
2
a
2
)
]
d
x
=
−
8
b
C
3
∫
−
a
a
[
(
1
−
x
2
a
2
)
(
3
/
2
)
]
d
x
=
−
8
b
C
3
a
3
∫
−
a
a
[
(
a
2
−
x
2
)
(
3
/
2
)
]
d
x
=
−
8
b
C
3
a
3
[
(
2
)
(
1
)
(
3
)
(
2
)
(
4
)
π
2
a
4
]
=
−
π
a
b
C
{\displaystyle {\begin{aligned}T&=2\int _{-a}^{a}\left[\int _{-b{\sqrt {(1-x^{2}/a^{2})}}}^{b{\sqrt {(1-x^{2}/a^{2})}}}C\left({\frac {x^{2}}{a^{2}}}+{\frac {y^{2}}{b^{2}}}-1\right)~dy\right]~dx\\&=2C\int _{-a}^{a}\left[\left|{\frac {x^{2}~y}{a^{2}}}+{\frac {y^{3}}{3b^{2}}}-y\right|_{-b{\sqrt {(1-x^{2}/a^{2})}}}^{b{\sqrt {(1-x^{2}/a^{2})}}}\right]~dx\\&=2C\int _{-a}^{a}\left[\left|y\left[{\frac {y^{2}}{3b^{2}}}-\left(1-{\frac {x^{2}}{a^{2}}}\right)\right]\right|_{-b{\sqrt {(1-x^{2}/a^{2})}}}^{b{\sqrt {(1-x^{2}/a^{2})}}}\right]~dx\\&=2C\int _{-a}^{a}2b\left({\sqrt {1-{\frac {x^{2}}{a^{2}}}}}\right)\left[{\frac {1}{3}}\left(1-{\frac {x^{2}}{a^{2}}}\right)-\left(1-{\frac {x^{2}}{a^{2}}}\right)\right]~dx\\&=-{\frac {8bC}{3}}\int _{-a}^{a}\left[\left(1-{\frac {x^{2}}{a^{2}}}\right)^{(3/2)}\right]~dx=-{\frac {8bC}{3a^{3}}}\int _{-a}^{a}\left[\left(a^{2}-x^{2}\right)^{(3/2)}\right]~dx\\&=-{\frac {8bC}{3a^{3}}}\left[(2){\frac {(1)(3)}{(2)(4)}}{\frac {\pi }{2}}a^{4}\right]=-\pi ~a~b~C\end{aligned}}}
Therefore,
T
=
π
a
b
μ
α
a
2
b
2
a
2
+
b
2
{\displaystyle T=\pi ab{\frac {\mu \alpha ~a^{2}~b^{2}}{a^{2}+b^{2}}}}
or,
α
=
T
(
a
2
+
b
2
)
π
μ
a
3
b
3
{\displaystyle {\alpha ={\frac {T(a^{2}+b^{2})}{\pi \mu a^{3}b^{3}}}}}
The torsion constant
J
~
{\displaystyle {\tilde {J}}}
is given by
J
~
=
T
μ
α
=
π
a
3
b
3
a
2
+
b
2
{\displaystyle {{\tilde {J}}={\frac {T}{\mu \alpha }}={\frac {\pi ~a^{3}~b^{3}}{a^{2}+b^{2}}}}}
The stresses in the section are given by
σ
13
=
∂
ϕ
∂
y
=
2
C
y
b
2
σ
23
=
−
∂
ϕ
∂
x
=
−
2
C
x
a
2
{\displaystyle {\begin{aligned}\sigma _{13}={\frac {\partial \phi }{\partial y}}={\frac {2Cy}{b^{2}}}\\\sigma _{23}=-{\frac {\partial \phi }{\partial x}}=-{\frac {2Cx}{a^{2}}}\end{aligned}}}
The projected shear traction is
τ
=
σ
13
2
+
σ
23
2
=
2
|
C
|
y
2
b
4
+
x
2
a
4
{\displaystyle \tau ={\sqrt {\sigma _{13}^{2}+\sigma _{23}^{2}}}=2|C|{\sqrt {{\frac {y^{2}}{b^{4}}}+{\frac {x^{2}}{a^{4}}}}}}
The maximum projected shear traction is at
(
x
,
y
)
=
(
0
,
±
b
)
{\displaystyle (x,y)=(0,\pm b)}
. Hence,
τ
max
=
2
|
C
|
b
{\displaystyle \tau _{\text{max}}={\frac {2|C|}{b}}}
To express the magnitude of the maximum shear stress in terms
of
T
{\displaystyle T}
,
a
{\displaystyle a}
, and
b
{\displaystyle b}
, we use
T
=
−
π
a
b
C
⇒
C
=
−
T
π
a
b
{\displaystyle T=-\pi abC~~\Rightarrow ~~C=-{\frac {T}{\pi ab}}}
Therefore,
τ
max
=
2
|
C
|
b
=
2
T
π
a
b
2
{\displaystyle {\tau _{\text{max}}={\frac {2|C|}{b}}={\frac {2T}{\pi ab^{2}}}}}