The complementary strain energy density is given by

For linear elastic materials

Let
be the set of all statically admissible states of stress.
Let the complementary energy functional be
![{\displaystyle \Pi ^{c}[{\boldsymbol {\sigma }}]=\int _{\mathcal {B}}U^{c}({\boldsymbol {\sigma }})~dV-\int _{\partial {\mathcal {B}}^{u}}\mathbf {t} \bullet {\widehat {\mathbf {u} }}~dA}](https://wikimedia.org/api/rest_v1/media/math/render/svg/54a21bbc8fd996c8752aeffffd08e456fefadd33)
Then the Principle of Stationary Complementary Energy states that:
The Principle of Minimum Complementary Energy states that:
For linear elastic materials, the complementary energy functional is rendered an absolute minimum by the actual stress field.
Note that the complementary energy corresponding to the actual stress field is the negative of the potential energy corresponding to the actual displacement field.
Let
be a solution of a the mixed boundary value problem of linear elasticity.
Let
.
Define

Then
satisfies equilibrium and the traction BCs, i.e.,

Since

and

we have,
![{\displaystyle {\text{(1)}}\qquad \int _{\mathcal {B}}\left[U^{c}({\tilde {\boldsymbol {\sigma }}})-U^{c}({\boldsymbol {\sigma }})\right]~dV=\int _{\mathcal {B}}U^{c}({\boldsymbol {\sigma }}^{'})~dV+\int _{\mathcal {B}}{\boldsymbol {\sigma }}^{'}:{\boldsymbol {\varepsilon }}~dV}](https://wikimedia.org/api/rest_v1/media/math/render/svg/bed8f1be60bf2bdf14f1158983177e1f256b48e7)
We can also show that

Therefore,

Now,
![{\displaystyle \Pi ^{c}[{\boldsymbol {\sigma }}]=\int _{\mathcal {B}}U^{c}({\boldsymbol {\sigma }})~dV-\int _{\partial {\mathcal {B}}^{u}}\mathbf {t} \bullet {\widehat {\mathbf {u} }}~dA}](https://wikimedia.org/api/rest_v1/media/math/render/svg/54a21bbc8fd996c8752aeffffd08e456fefadd33)
Hence,
![{\displaystyle \Pi ^{c}[{\tilde {\boldsymbol {\sigma }}}]=\int _{\mathcal {B}}U^{c}({\tilde {\boldsymbol {\sigma }}})~dV-\int _{\partial {\mathcal {B}}^{u}}(\mathbf {t} +\mathbf {t'} )\bullet {\widehat {\mathbf {u} }}~dA}](https://wikimedia.org/api/rest_v1/media/math/render/svg/dd7840300b2e6feebaa7ea7b285d0a1492c28df7)
Therefore,
![{\displaystyle {\text{(3)}}\qquad \Pi ^{c}[{\tilde {\boldsymbol {\sigma }}}]-\Pi ^{c}[{\boldsymbol {\sigma }}]=\int _{\mathcal {B}}\left[U^{c}({\tilde {\boldsymbol {\sigma }}})-U^{c}({\boldsymbol {\sigma }})\right]~dV-\int _{\partial {\mathcal {B}}^{u}}\mathbf {t} ^{'}\bullet {\widehat {\mathbf {u} }}~dA}](https://wikimedia.org/api/rest_v1/media/math/render/svg/dddfee691f92e378f2b32f2ad2ed2d243fbf87f8)
From equations (1), (2), and (3), we have,
![{\displaystyle \Pi ^{c}[{\tilde {\boldsymbol {\sigma }}}]-\Pi ^{c}[{\boldsymbol {\sigma }}]=\int _{\mathcal {B}}U^{c}({\boldsymbol {\sigma }}^{'})~dV+\int _{\partial {\mathcal {B}}^{u}}\mathbf {t} ^{'}\bullet \mathbf {u} ~dA-\int _{\partial {\mathcal {B}}^{u}}\mathbf {t} ^{'}\bullet {\widehat {\mathbf {u} }}~dA}](https://wikimedia.org/api/rest_v1/media/math/render/svg/f80e1ef5f737c0f817d98587d2c6766b35621304)
Since
on
, we have,
![{\displaystyle \Pi ^{c}[{\tilde {\boldsymbol {\sigma }}}]-\Pi ^{c}[{\boldsymbol {\sigma }}]=\int _{\mathcal {B}}U^{c}({\boldsymbol {\sigma }}^{'})~dV>0}](https://wikimedia.org/api/rest_v1/media/math/render/svg/b149668b728a4082c07eb5640604cc525caaac29)
Hence, proved.