Given:
Displacement field
.
Find:
- The Lagrangian Green strain tensor
.
- The infinitesimal strain tensor
.
- The infintesimal rotation tensor
.
- The infinitesimal rotation vector
.
- The exact longitudinal strain in the reference material direction
.
- The approximate longitudinal strain in the direction
based on the infinitesimal strain tensor
.
The Maple output of the computations are shown below:
with(linalg): with(LinearAlgebra):
X := array(1..3): x := array(1..3):
e1 := array(1..3,[1,0,0]):
e2 := array(1..3,[0,1,0]):
e3 := array(1..3,[0,0,1]):
u := evalm(k*X[2]*e1 + k*X[1]*e2);
![{\displaystyle u:=\left[\!k\,{X_{2}},\,k\,{X_{1}},\,0\!\right]}](https://wikimedia.org/api/rest_v1/media/math/render/svg/c2d790123680b979a667a778c756f9b536dc7e09)
x := evalm(u + X);
![{\displaystyle x:=\left[\!k\,{X_{2}}+{X_{1}},\,k\,{X_{1}}+{X_{2}},\,{X_{3}}\!\right]}](https://wikimedia.org/api/rest_v1/media/math/render/svg/0fd6b764de1d7c2baed70a1a2db98925bc95aad5)
F := linalg[matrix](3,3):
for i from 1 to 3 do
for j from 1 to 3 do
F[i,j] := diff(x[i],X[j]);
end do;
end do;
evalm(F);

Id := IdentityMatrix(3): C := evalm(transpose(F)&*F);
E := evalm((1/2)*(C - Id));

![{\displaystyle E:={\begin{bmatrix}{\frac {k^{2}}{2}}&k&0\\[2ex]k&{\frac {k^{2}}{2}}&0\\[2ex]0&0&0\end{bmatrix}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/73ea9676745953dbb0aac06aa6aeedab366f7f92)
gradu := linalg[matrix](3,3):
for i from 1 to 3 do
for j from 1 to 3 do
gradu[i,j] := diff(u[i],X[j]);
end do;
end do;
evalm(gradu);

epsilon := evalm((1/2)*(gradu + transpose(gradu)));

omega := evalm((1/2)*(gradu - transpose(gradu)));

stretch1 := sqrt(evalm(evalm(e1&*C)&*transpose(e1))[1,1]):
longStrain1 := stretch1 - 1;


approxLongStrain1 := evalm(evalm(e1&*epsilon)&*transpose(e1))[1,1];

The geometrical difference between the large strain and small strain cases can be observed by looking at the figures from the previous examples.