Given:
Displacement field .
Find:
- The Lagrangian Green strain tensor .
- The infinitesimal strain tensor .
- The infintesimal rotation tensor .
- The infinitesimal rotation vector .
- The exact longitudinal strain in the reference material direction .
- The approximate longitudinal strain in the direction based on the infinitesimal strain tensor .
The Maple output of the computations are shown below:
with(linalg): with(LinearAlgebra):
X := array(1..3): x := array(1..3):
e1 := array(1..3,[1,0,0]):
e2 := array(1..3,[0,1,0]):
e3 := array(1..3,[0,0,1]):
u := evalm(k*X[2]*e1 + k*X[1]*e2);
x := evalm(u + X);
F := linalg[matrix](3,3):
for i from 1 to 3 do
for j from 1 to 3 do
F[i,j] := diff(x[i],X[j]);
end do;
end do;
evalm(F);
Id := IdentityMatrix(3): C := evalm(transpose(F)&*F);
E := evalm((1/2)*(C - Id));
gradu := linalg[matrix](3,3):
for i from 1 to 3 do
for j from 1 to 3 do
gradu[i,j] := diff(u[i],X[j]);
end do;
end do;
evalm(gradu);
epsilon := evalm((1/2)*(gradu + transpose(gradu)));
omega := evalm((1/2)*(gradu - transpose(gradu)));
stretch1 := sqrt(evalm(evalm(e1&*C)&*transpose(e1))[1,1]):
longStrain1 := stretch1 - 1;
approxLongStrain1 := evalm(evalm(e1&*epsilon)&*transpose(e1))[1,1];
The geometrical difference between the large strain and small strain cases can be observed by looking at the figures from the previous examples.