Concentrated force on a half plane
|
From the Flamant Solution

and

If
and
, we obtain the special case of
a concentrated force acting on a half-plane. Then,

or,

Therefore,

The stresses are

The stress
is obviously the superposition of the stresses
due to
and
, applied separately to the half-plane.
The tensile force
produces the stress field

Stress due to concentrated force on a half plane
|
The stress function is

Hence, the displacements from Michell's solution are
![{\displaystyle {\begin{aligned}2\mu u_{r}&={\frac {F_{2}}{2\pi }}\left[(\kappa -1)\theta \cos \theta +\sin \theta -(\kappa +1)\ln(r)\sin \theta \right]\\2\mu u_{\theta }&={\frac {F_{2}}{2\pi }}\left[-(\kappa -1)\theta \sin \theta -\cos \theta -(\kappa +1)\ln(r)\cos \theta \right]\end{aligned}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/33e0f21bc55b75d114b67384ab4d3f664c5c8790)
At
, (
,
),
![{\displaystyle {\begin{aligned}2\mu u_{r}=2\mu u_{1}&=0\\2\mu u_{\theta }=2\mu u_{2}&={\frac {F_{2}}{2\pi }}\left[-1-(\kappa +1)\ln(r)\right]\end{aligned}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/8bd12af44d96643f2d5311a8d527c8cebe80fca1)
At
, (
,
),
![{\displaystyle {\begin{aligned}2\mu u_{r}=-2\mu u_{1}&={\frac {F_{2}}{2\pi }}(\kappa -1)\\2\mu u_{\theta }=-2\mu u_{2}&={\frac {F_{2}}{2\pi }}\left[1+(\kappa +1)\ln(r)\right]\end{aligned}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/bf6949aef857baf3ca0906c3579992107841d0a5)
where

Since we expect the solution to be symmetric about
, we superpose a
rigid body displacement

The displacements are

where

and
on
.
The tensile force
produces the stress field

Stress due to concentrated force on a half plane
|
The displacements are

Superpose the two solutions. The stresses are

The displacements are
