Jump to content

Elasticity/Concentrated force on half plane

From Wikiversity

Concentrated force on a half-plane

[edit | edit source]
Concentrated force on a half plane

From the Flamant Solution

and

If and, we obtain the special case of a concentrated force acting on a half-plane. Then,

or,

Therefore,

The stresses are

The stress is obviously the superposition of the stresses due to and , applied separately to the half-plane.


Problem 1 : Stresses and displacements due to F2

[edit | edit source]

The tensile force produces the stress field

Stress due to concentrated force on a half plane

The stress function is

Hence, the displacements from Michell's solution are

At , (, ),

At , (, ),

where

Since we expect the solution to be symmetric about , we superpose a rigid body displacement

The displacements are

where

and on .

Problem 2 : Stresses and displacements due to F1

[edit | edit source]

The tensile force produces the stress field

Stress due to concentrated force on a half plane

The displacements are

Stresses and displacements due to F1 + F2

[edit | edit source]

Superpose the two solutions. The stresses are

The displacements are