Elastic wedge loaded by an axial force
|
The BCs at
are

- What is
at the vertex ?
- The traction is infinite since the force is applied on zero area. Consider equilibrium of a portion of the wedge.
At
, the BCs are

For equilibrium,
.
Therefore,
![{\displaystyle {\begin{aligned}P_{1}+\int _{-\beta }^{\beta }\left[\sigma _{rr}(a,\theta )\cos \theta -\sigma _{r\theta }(a,\theta )\sin \theta \right]a~d\theta =0{\text{(32)}}\qquad \\\int _{-\beta }^{\beta }\left[\sigma _{rr}(a,\theta )\sin \theta +\sigma _{r\theta }(a,\theta )\cos \theta \right]a~d\theta =0{\text{(33)}}\qquad \\\int _{-\beta }^{\beta }\left[a\sigma _{r\theta }(a,\theta )\right]a~d\theta =0{\text{(34)}}\qquad \end{aligned}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/3f2e7ed9890c4cbf8f0ee4ad5ae74f34c14b2872)
These constraint conditions are equivalent to the concentrated force BC.
Assume that
. This satisfies the traction
BCs on
and equation (34). Therefore,

Hence,

That means
is independent of
. Therefore,
in order to satisfy the BCs,
, i.e.,
![{\displaystyle {\text{(37)}}\qquad \zeta (r)=C_{1}r+C_{2}\Rightarrow \varphi =r\eta (\theta )+C_{1}r=r[\eta (\theta )+C_{1}]=r\xi (\theta )}](https://wikimedia.org/api/rest_v1/media/math/render/svg/c561dddcc1371cabe3fa86db98d291b21cf62489)
Checking for compatibility,
, we get

The general solution is

Therefore,
![{\displaystyle {\text{(40)}}\qquad {\varphi =r\left[A\sin \theta +B\cos \theta +C\theta \sin \theta +D\theta \cos \theta \right]}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/36b97e7ffc3796a0b8611d7eda0751962b01c78f)
The only non-zero stress is
.
![{\displaystyle {\text{(41)}}\qquad \sigma _{rr}={\frac {1}{r}}\left[2C\cos \theta -2D\sin \theta \right]}](https://wikimedia.org/api/rest_v1/media/math/render/svg/31fd1231d138ed3eb7b31d10e7787479dcc98b78)
Plugging into equation (33), we get
![{\displaystyle {\text{(42)}}\qquad -D\left[2\beta -\sin(2\beta )\right]=0\Rightarrow D=0}](https://wikimedia.org/api/rest_v1/media/math/render/svg/9a0854a3868d19a656908aa6b66f07d9e8ef9005)
Hence,

Plugging into equation (32), we get
![{\displaystyle {\text{(44)}}\qquad -P=C\left[2\beta +\sin(2\beta )\right]\Rightarrow C={\frac {-P}{2\beta +\sin(2\beta )}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/a7e8c6f7f349559afa4a2766e51ab04bee40b288)
Therefore,

The stress state is
![{\displaystyle {\text{(46)}}\qquad {\sigma _{rr}=-{\frac {2P\cos \theta }{r[2\beta +\sin(2\beta )]}}~;~~\sigma _{r\theta }=0~;~~\sigma _{\theta \theta }=0}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/c4d80487e029788eb47a791cfa86f2451e0a5cb2)

A concentrated point load acting on a half plane.


where

Plug in
,

Plug
into
,

Hence,

Solving,

Therefore,

To fix the rigid body motion, we set
when
,
and set
when
and
.Then,

The displacements are singular at
and
.
At
,

Is the small strain assumption satisfied ?