# Einstein Probabilistic Units/Black Holes

This resource includes primary and/or secondary research.

The following table shows some properties of Black Hole using Einstein's Probabilistic Units (EPU);

 Property Equation EPU Mass ${\displaystyle M_{s}=2\;{\frac {1}{r_{s}}}{\frac {G}{c^{2}}}}$ ${\displaystyle M_{s}={\frac {2\;c}{A_{s}\;B_{s}}}}$ ${\displaystyle M_{s}={\frac {c}{B_{0}}}\;{\frac {A_{s}}{A_{0}^{2}}}}$ Schwarzschild radius ${\displaystyle r_{s}=2\;M_{s}{\frac {G}{c^{2}}}}$ ${\displaystyle r_{s}=2\;M_{s}\;B_{0}}$ ${\displaystyle B_{0}={\frac {G}{c^{2}}}={\frac {1}{2}}\;B_{s}}$ Area ${\displaystyle A_{s}=16\;\pi \;M_{s}^{2}{\frac {G^{2}}{c^{4}}}}$ ${\displaystyle A_{s}=16\pi \;M_{s}^{2}\;B_{0}^{2}}$ ${\displaystyle B_{0}^{2}={\frac {1}{16\;\pi }}\;B_{s}^{2}}$ Density ${\displaystyle \rho _{s}={\frac {3}{32\pi }}{\frac {c^{6}}{M_{s}^{2}\;G^{3}}}}$ ${\displaystyle \rho _{s}={\frac {3}{32\pi }}{\frac {1}{M_{s}^{2}}}{\frac {1}{B_{0}^{3}}}}$ ${\displaystyle \rho _{s}={\frac {3}{8\pi }}{\frac {1}{B_{0}}}{\frac {1}{r_{s}^{2}}}}$ Entropy ${\displaystyle S_{BH}={\frac {1}{4}}\;k_{B}{\frac {A_{s}}{l_{P}^{2}}}}$ ${\displaystyle S_{BH}={\frac {1}{4}}\;k_{B}{\frac {B_{s}}{B_{0}}}}$ ${\displaystyle B_{0}={\frac {1}{4}}\;k_{B}{\frac {B_{s}}{S_{BH}}}}$ Temperature ${\displaystyle T={\frac {1}{8\;\pi }}{\frac {1}{M_{s}}}{\frac {\hbar \;c}{k_{B}}}{\frac {c^{2}}{G}}}$ ${\displaystyle }$ ${\displaystyle }$

### Entropy

The Bekenstein–Hawking formula for black-hole entropy is proportional to the area of its event horizon A.

${\displaystyle S_{BH}={\frac {A_{s}}{4\;l_{P}^{2}}}={\frac {k_{B}\;c^{3}\;A_{s}}{4\;G\;\hbar }}\;{\frac {J}{K}}}$

Using Einstein's Probabilistic units to express Bekenstein–Hawking formula;

${\displaystyle S_{BH}=k_{B}\;{\frac {c^{3}}{\hbar }}\;{\frac {A_{s}}{c^{2}}}\;{\frac {c^{2}}{G}}=k_{B}\;{\frac {c^{3}}{\hbar }}\;{\frac {1}{\upsilon _{s}^{2}}}\;{\frac {1}{B_{0}}}=k_{B}\;{\frac {B_{s}}{B_{0}}}=Constant\;{\frac {1}{\upsilon _{s}^{2}}}=-k_{B}\;}$

${\displaystyle S_{BH}=k_{B}\;ln(W)=k_{B}\;{\frac {B_{s}}{B_{0}}}=k_{B}\;{\frac {A_{0}^{2}}{A_{S}^{2}}}}$

${\displaystyle W=e^{S/k_{B}}=e^{B_{s}/B_{0}}}$