# Einstein Probabilistic Units/Black Holes

This resource includes primary and/or secondary research.

The following table shows some properties of Black Hole using Einstein's Probabilistic Units (EPU);

 Property Equation EPU Mass $M_{s}=2\;{\frac {1}{r_{s}}}{\frac {G}{c^{2}}}$ $M_{s}={\frac {2\;c}{A_{s}\;B_{s}}}$ $M_{s}={\frac {c}{B_{0}}}\;{\frac {A_{s}}{A_{0}^{2}}}$ Schwarzschild radius $r_{s}=2\;M_{s}{\frac {G}{c^{2}}}$ $r_{s}=2\;M_{s}\;B_{0}$ $B_{0}={\frac {G}{c^{2}}}={\frac {1}{2}}\;B_{s}$ Area $A_{s}=16\;\pi \;M_{s}^{2}{\frac {G^{2}}{c^{4}}}$ $A_{s}=16\pi \;M_{s}^{2}\;B_{0}^{2}$ $B_{0}^{2}={\frac {1}{16\;\pi }}\;B_{s}^{2}$ Density $\rho _{s}={\frac {3}{32\pi }}{\frac {c^{6}}{M_{s}^{2}\;G^{3}}}$ $\rho _{s}={\frac {3}{32\pi }}{\frac {1}{M_{s}^{2}}}{\frac {1}{B_{0}^{3}}}$ $\rho _{s}={\frac {3}{8\pi }}{\frac {1}{B_{0}}}{\frac {1}{r_{s}^{2}}}$ Entropy $S_{BH}={\frac {1}{4}}\;k_{B}{\frac {A_{s}}{l_{P}^{2}}}$ $S_{BH}={\frac {1}{4}}\;k_{B}{\frac {B_{s}}{B_{0}}}$ $B_{0}={\frac {1}{4}}\;k_{B}{\frac {B_{s}}{S_{BH}}}$ Temperature $T={\frac {1}{8\;\pi }}{\frac {1}{M_{s}}}{\frac {\hbar \;c}{k_{B}}}{\frac {c^{2}}{G}}$   ### Entropy

The Bekenstein–Hawking formula for black-hole entropy is proportional to the area of its event horizon A.

$S_{BH}={\frac {A_{s}}{4\;l_{P}^{2}}}={\frac {k_{B}\;c^{3}\;A_{s}}{4\;G\;\hbar }}\;{\frac {J}{K}}$ Using Einstein's Probabilistic units to express Bekenstein–Hawking formula;

$S_{BH}=k_{B}\;{\frac {c^{3}}{\hbar }}\;{\frac {A_{s}}{c^{2}}}\;{\frac {c^{2}}{G}}=k_{B}\;{\frac {c^{3}}{\hbar }}\;{\frac {1}{\upsilon _{s}^{2}}}\;{\frac {1}{B_{0}}}=k_{B}\;{\frac {B_{s}}{B_{0}}}=Constant\;{\frac {1}{\upsilon _{s}^{2}}}=-k_{B}\;$ $S_{BH}=k_{B}\;ln(W)=k_{B}\;{\frac {B_{s}}{B_{0}}}=k_{B}\;{\frac {A_{0}^{2}}{A_{S}^{2}}}$ $W=e^{S/k_{B}}=e^{B_{s}/B_{0}}$ 