Differentiable function/D in R/Linear approximation/Fact/Proof

From Wikiversity
Jump to navigation Jump to search

If is differentiable, then we set

Then the only possibility to fulfill the conditions for is

Failed to parse (unknown function "\begin{cases}"): {\displaystyle {{}} r(x) = \begin{cases} \frac{ f (x )-f (a) }{ x -a } - s \text{ for } x \neq a\, , \\ 0 \text{ for } x <table class="metadata plainlinks ambox ambox-notice" style=""> <tr> <td class="mbox-image"><div style="width: 52px;"> [[File:Wikiversity logo 2017.svg|50px|link=]]</div></td> <td class="mbox-text" style=""> '''[[m:Soft redirect|Soft redirect]]'''<br />This page can be found at <span id="SoftRedirect">[[mw:Help:Magic words#Other]]</span>. </td> </tr> </table>[[Category:Wikiversity soft redirects|Differentiable function/D in R/Linear approximation/Fact/Proof]] __NOINDEX__ a \, . \end{cases} \, }

Because of differentiability, the limit

exists, and its value is . This means that is continuous in .
If and exist with the described properties, then for the relation

holds. Since is continuous in , the limit on the left-hand side, for , exists.