Let K {\displaystyle {}K} be a field, and let M = ( a i j ) i j {\displaystyle {}M={\left(a_{ij}\right)}_{ij}} be an m × n {\displaystyle {}m\times n} -matrix over K {\displaystyle {}K} . For i , j ∈ { 1 , … , n } {\displaystyle {}i,j\in \{1,\ldots ,n\}} , let M i j {\displaystyle {}M_{ij}} be the matrix which arises from M {\displaystyle {}M} , by leaving out the i {\displaystyle {}i} -th row and the j {\displaystyle {}j} -th column.
(for n ≥ 2 {\displaystyle {}n\geq 2} and for every fixed i {\displaystyle {}i} and j {\displaystyle {}j} )