Let A {\displaystyle {}A} be a commutative R {\displaystyle {}R} -algebra over a commutative ring R {\displaystyle {}R} . Let
denote the R {\displaystyle {}R} -linear multiplication map for f ∈ A {\displaystyle {}f\in A} . For R {\displaystyle {}R} -linear maps
set
Suppose that a R {\displaystyle {}R} -derivation δ : A → A {\displaystyle {}\delta \colon A\rightarrow A} is given. Show that for all g ∈ A {\displaystyle {}g\in A} the map [ δ , μ g ] {\displaystyle {}[\delta ,\mu _{g}]} is multiplication by some element.