A special feature of
R
3
{\displaystyle {}\mathbb {R} ^{3}}
is the so-called cross product . This assigns, to two given vectors, a vector that is orthogonal to them.
Let
K
{\displaystyle {}K}
be a
field . The
operation
on
K
3
{\displaystyle {}K^{3}}
, defined by
x
×
y
=
(
x
1
x
2
x
3
)
×
(
y
1
y
2
y
3
)
:=
(
x
2
y
3
−
x
3
y
2
−
x
1
y
3
+
x
3
y
1
x
1
y
2
−
x
2
y
1
)
,
{\displaystyle {}x\times y={\begin{pmatrix}x_{1}\\x_{2}\\x_{3}\end{pmatrix}}\times {\begin{pmatrix}y_{1}\\y_{2}\\y_{3}\end{pmatrix}}:={\begin{pmatrix}x_{2}y_{3}-x_{3}y_{2}\\-x_{1}y_{3}+x_{3}y_{1}\\x_{1}y_{2}-x_{2}y_{1}\end{pmatrix}}\,,}
is called the
cross product .
The cross product is also called the vector product . To remember this formula, one might think
x
×
y
=
det
(
e
1
x
1
y
1
e
2
x
2
y
2
e
3
x
3
y
3
)
,
{\displaystyle {}x\times y=\det {\begin{pmatrix}e_{1}&x_{1}&y_{1}\\e_{2}&x_{2}&y_{2}\\e_{3}&x_{3}&y_{3}\end{pmatrix}}\,,}
where
e
1
,
e
2
,
e
3
{\displaystyle {}e_{1},e_{2},e_{3}}
are the standard vectors, and where we expand formally with respect to the first column. In this way, the cross product is defined with respect to the standard basis.
The
cross product
on
K
3
{\displaystyle {}K^{3}}
fulfills the following properties
(where
x
,
y
,
z
∈
K
3
{\displaystyle {}x,y,z\in K^{3}}
and
a
,
b
∈
K
{\displaystyle {}a,b\in K}
).
We have
x
×
y
=
−
(
y
×
x
)
.
{\displaystyle {}x\times y=-(y\times x)\,.}
We have
(
a
x
+
b
y
)
×
z
=
a
(
x
×
z
)
+
b
(
y
×
z
)
{\displaystyle {}(ax+by)\times z=a(x\times z)+b(y\times z)\,}
and
z
×
(
a
x
+
b
y
)
=
a
(
z
×
x
)
+
b
(
z
×
y
)
.
{\displaystyle {}z\times (ax+by)=a(z\times x)+b(z\times y)\,.}
We have
x
×
y
=
0
{\displaystyle {}x\times y=0\,}
if and only if
x
{\displaystyle {}x}
and
y
{\displaystyle {}y}
are
linearly dependent .
We have
x
×
(
y
×
z
)
+
y
×
(
z
×
x
)
+
z
×
(
x
×
y
)
=
0
.
{\displaystyle {}x\times (y\times z)+y\times (z\times x)+z\times (x\times y)=0\,.}
We have
⟨
x
×
y
,
z
⟩
=
det
(
x
,
y
,
z
)
,
{\displaystyle {}\left\langle x\times y,z\right\rangle =\det(x\,,y\,,z)\,,}
where
⟨
−
,
−
⟩
{\displaystyle {}\left\langle -,-\right\rangle }
denotes the formal evaluation
in the sense of the
standard inner product.
We have
⟨
x
,
x
×
y
⟩
=
0
=
⟨
y
,
x
×
y
⟩
,
{\displaystyle {}\left\langle x,x\times y\right\rangle =0=\left\langle y,x\times y\right\rangle \,,}
where
⟨
−
,
−
⟩
{\displaystyle {}\left\langle -,-\right\rangle }
denotes the formal evaluation in the sense of the standard inner product.
(1) is clear from the definition.
(2). We have
(
a
(
x
1
x
2
x
3
)
+
b
(
y
1
y
2
y
3
)
)
×
(
z
1
z
2
z
3
)
=
(
a
x
1
+
b
y
1
a
x
2
+
b
y
2
a
x
3
+
b
y
3
)
×
(
z
1
z
2
z
3
)
=
(
(
a
x
2
+
b
y
2
)
z
3
−
(
a
x
3
+
b
y
3
)
z
2
−
(
a
x
1
+
b
y
1
)
z
3
+
(
a
x
3
+
b
y
3
)
z
1
(
a
x
1
+
b
y
1
)
z
2
−
(
a
x
2
+
b
y
2
)
z
1
)
=
(
a
x
2
z
3
−
a
x
3
z
2
−
a
x
1
z
3
+
a
x
3
z
1
a
x
1
z
2
−
a
x
2
z
1
)
+
(
b
y
2
z
3
−
b
y
3
z
2
−
b
y
1
z
3
+
b
y
1
z
3
b
y
1
z
2
−
b
y
2
z
1
)
=
a
(
x
2
z
3
−
x
3
z
2
−
x
1
z
3
+
x
3
z
1
x
1
z
2
−
x
2
z
1
)
+
b
(
y
2
z
3
−
y
3
z
2
−
y
1
z
3
+
y
1
z
3
y
1
z
2
−
y
2
z
1
)
=
a
(
x
×
z
)
+
b
(
y
×
z
)
.
{\displaystyle {}{\begin{aligned}{\left(a{\begin{pmatrix}x_{1}\\x_{2}\\x_{3}\end{pmatrix}}+b{\begin{pmatrix}y_{1}\\y_{2}\\y_{3}\end{pmatrix}}\right)}\times {\begin{pmatrix}z_{1}\\z_{2}\\z_{3}\end{pmatrix}}&={\begin{pmatrix}ax_{1}+by_{1}\\ax_{2}+by_{2}\\ax_{3}+by_{3}\end{pmatrix}}\times {\begin{pmatrix}z_{1}\\z_{2}\\z_{3}\end{pmatrix}}\\&={\begin{pmatrix}(ax_{2}+by_{2})z_{3}-(ax_{3}+by_{3})z_{2}\\-(ax_{1}+by_{1})z_{3}+(ax_{3}+by_{3})z_{1}\\(ax_{1}+by_{1})z_{2}-(ax_{2}+by_{2})z_{1}\end{pmatrix}}\\&={\begin{pmatrix}ax_{2}z_{3}-ax_{3}z_{2}\\-ax_{1}z_{3}+ax_{3}z_{1}\\ax_{1}z_{2}-ax_{2}z_{1}\end{pmatrix}}+{\begin{pmatrix}by_{2}z_{3}-by_{3}z_{2}\\-by_{1}z_{3}+by_{1}z_{3}\\by_{1}z_{2}-by_{2}z_{1}\end{pmatrix}}\\&=a{\begin{pmatrix}x_{2}z_{3}-x_{3}z_{2}\\-x_{1}z_{3}+x_{3}z_{1}\\x_{1}z_{2}-x_{2}z_{1}\end{pmatrix}}+b{\begin{pmatrix}y_{2}z_{3}-y_{3}z_{2}\\-y_{1}z_{3}+y_{1}z_{3}\\y_{1}z_{2}-y_{2}z_{1}\end{pmatrix}}\\&=a(x\times z)+b(y\times z).\end{aligned}}}
The second equation follows from this and from (1).
(3). If
x
{\displaystyle {}x}
and
y
{\displaystyle {}y}
are linearly dependent, then we can write
x
=
c
y
{\displaystyle {}x=cy}
(or the other way round).
In this case,
(
c
y
1
c
y
2
c
y
3
)
×
(
y
1
y
2
y
3
)
=
(
c
y
2
y
3
−
c
y
2
y
3
−
c
y
1
y
3
+
c
y
3
y
1
c
y
1
y
2
−
c
y
2
y
1
)
=
0
.
{\displaystyle {}{\begin{pmatrix}cy_{1}\\cy_{2}\\cy_{3}\end{pmatrix}}\times {\begin{pmatrix}y_{1}\\y_{2}\\y_{3}\end{pmatrix}}={\begin{pmatrix}cy_{2}y_{3}-cy_{2}y_{3}\\-cy_{1}y_{3}+cy_{3}y_{1}\\cy_{1}y_{2}-cy_{2}y_{1}\end{pmatrix}}=0\,.}
If the cross product is
0
{\displaystyle {}0}
, then all entries of the vectors
(
x
2
y
3
−
x
3
y
2
−
x
1
y
3
+
x
3
y
1
x
1
y
2
−
x
2
y
1
)
{\displaystyle {}{\begin{pmatrix}x_{2}y_{3}-x_{3}y_{2}\\-x_{1}y_{3}+x_{3}y_{1}\\x_{1}y_{2}-x_{2}y_{1}\end{pmatrix}}}
equal
0
{\displaystyle {}0}
. For example, let
y
1
≠
0
{\displaystyle {}y_{1}\neq 0}
.
From
x
1
=
0
{\displaystyle {}x_{1}=0}
,
we can deduce directly
x
2
=
x
3
=
0
,
{\displaystyle {}x_{2}=x_{3}=0\,,}
and
x
{\displaystyle {}x}
is the zero vector. So suppose that
x
1
≠
0
{\displaystyle {}x_{1}\neq 0}
.
Then
y
2
=
y
1
x
1
x
2
{\displaystyle {}y_{2}={\frac {y_{1}}{x_{1}}}x_{2}}
and
y
3
=
y
1
x
1
x
3
{\displaystyle {}y_{3}={\frac {y_{1}}{x_{1}}}x_{3}}
;
therefore, we get
y
=
y
1
x
1
x
.
{\displaystyle {}y={\frac {y_{1}}{x_{1}}}x\,.}
(4). See
exercise .
(5). We have
⟨
x
×
y
,
z
⟩
=
⟨
(
x
2
y
3
−
x
3
y
2
−
x
1
y
3
+
x
3
y
1
x
1
y
2
−
x
2
y
1
)
,
(
z
1
z
2
z
3
)
⟩
=
z
1
x
2
y
3
−
z
1
x
3
y
2
−
z
2
x
1
y
3
+
z
2
x
3
y
1
+
z
3
x
1
y
2
−
z
3
x
2
y
1
.
{\displaystyle {}{\begin{aligned}\left\langle x\times y,z\right\rangle &=\left\langle {\begin{pmatrix}x_{2}y_{3}-x_{3}y_{2}\\-x_{1}y_{3}+x_{3}y_{1}\\x_{1}y_{2}-x_{2}y_{1}\end{pmatrix}},{\begin{pmatrix}z_{1}\\z_{2}\\z_{3}\end{pmatrix}}\right\rangle \\&=z_{1}x_{2}y_{3}-z_{1}x_{3}y_{2}-z_{2}x_{1}y_{3}+z_{2}x_{3}y_{1}+z_{3}x_{1}y_{2}-z_{3}x_{2}y_{1}.\end{aligned}}}
This coincides with the determinant,
due to Sarrus .
(6) follows from (5).
◻
{\displaystyle \Box }
The expression
⟨
x
×
y
,
z
⟩
{\displaystyle {}\left\langle x\times y,z\right\rangle }
from (5), that is, the determinant of the three vectors, considered as a column vector, is also called triple product .
Let
u
1
,
u
2
,
u
3
{\displaystyle {}u_{1},u_{2},u_{3}}
be an
orthonormal basis
of
R
3
{\displaystyle {}\mathbb {R} ^{3}}
with
det
(
u
1
,
u
2
,
u
3
)
=
1
.
{\displaystyle {}\det {\left(u_{1},\,u_{2},\,u_{3}\right)}=1\,.}
Then the
cross product
x
×
y
{\displaystyle {}x\times y}
can be computed with the coordinates of
x
{\displaystyle {}x}
and
y
{\displaystyle {}y}
with respect to this basis
(and the formula from
Definition).
Let
x
=
c
1
u
1
+
c
2
u
2
+
c
3
u
3
{\displaystyle {}x=c_{1}u_{1}+c_{2}u_{2}+c_{3}u_{3}\,}
and
y
=
d
1
u
1
+
d
2
u
2
+
d
3
u
3
.
{\displaystyle {}y=d_{1}u_{1}+d_{2}u_{2}+d_{3}u_{3}\,.}
Due to
fact (2) ,
we have
x
×
y
=
(
c
1
u
1
+
c
2
u
2
+
c
3
u
3
)
×
(
d
1
u
1
+
d
2
u
2
+
d
3
u
3
)
=
∑
1
≤
i
,
j
≤
3
c
i
d
j
(
u
i
×
u
j
)
.
{\displaystyle {}x\times y={\left(c_{1}u_{1}+c_{2}u_{2}+c_{3}u_{3}\right)}\times {\left(d_{1}u_{1}+d_{2}u_{2}+d_{3}u_{3}\right)}=\sum _{1\leq i,j\leq 3}c_{i}d_{j}{\left(u_{i}\times u_{j}\right)}\,.}
Due to
fact (3) ,
we have
u
i
×
u
i
=
0
,
{\displaystyle {}u_{i}\times u_{i}=0\,,}
and, because of
fact (1) ,
we have
u
i
×
u
j
=
−
u
j
×
u
i
.
{\displaystyle {}u_{i}\times u_{j}=-u_{j}\times u_{i}\,.}
According to
fact (6) ,
u
1
×
u
2
{\displaystyle {}u_{1}\times u_{2}}
is perpendicular to
u
1
{\displaystyle {}u_{1}}
and to
u
2
{\displaystyle {}u_{2}}
; therefore,
u
1
×
u
2
=
λ
u
3
{\displaystyle {}u_{1}\times u_{2}=\lambda u_{3}\,}
with some
λ
∈
R
{\displaystyle {}\lambda \in \mathbb {R} }
,
as this orthogonality condition defines a line. Because of
fact (5)
and the condition, we get
λ
=
⟨
λ
u
3
,
u
3
⟩
=
⟨
u
1
×
u
2
,
u
3
⟩
=
det
(
u
1
,
u
2
,
u
3
)
=
1
;
{\displaystyle {}\lambda =\left\langle \lambda u_{3},u_{3}\right\rangle =\left\langle u_{1}\times u_{2},u_{3}\right\rangle =\det {\left(u_{1},\,u_{2},\,u_{3}\right)}=1\,;}
hence,
u
1
×
u
2
=
u
3
.
{\displaystyle {}u_{1}\times u_{2}=u_{3}\,.}
Using
fact (3) ,
we obtain
u
1
×
u
3
=
−
u
2
{\displaystyle {}u_{1}\times u_{3}=-u_{2}}
and
u
2
×
u
3
=
u
1
{\displaystyle {}u_{2}\times u_{3}=u_{1}}
.
Altogether we get
x
×
y
=
∑
1
≤
i
,
j
≤
3
c
i
d
j
(
u
i
×
u
j
)
=
∑
i
<
j
(
c
i
d
j
−
c
j
d
i
)
(
u
i
×
u
j
)
=
(
c
1
d
2
−
c
2
d
1
)
u
3
−
(
c
1
d
3
−
c
3
d
1
)
u
2
+
(
c
2
d
3
−
c
3
d
2
)
u
1
,
{\displaystyle {}{\begin{aligned}x\times y&=\sum _{1\leq i,j\leq 3}c_{i}d_{j}{\left(u_{i}\times u_{j}\right)}\\&=\sum _{i<j}(c_{i}d_{j}-c_{j}d_{i}){\left(u_{i}\times u_{j}\right)}\\&=(c_{1}d_{2}-c_{2}d_{1})u_{3}-(c_{1}d_{3}-c_{3}d_{1})u_{2}+(c_{2}d_{3}-c_{3}d_{2})u_{1},\end{aligned}}}
and this is the claim.
◻
{\displaystyle \Box }