# Coordinate systems/Derivation of formulas

The purpose of this resource is to carefully examine the Wikipedia article Del in cylindrical and spherical coordinates for accuracy.

The identities are reproduced below, and contributors are encouraged to either:

1. Verify the identity and place its reference using a five em padding after the equation: {{pad|5em}}verified<ref>reference</ref>
2. Contribute to Wikiveristy by linking the title to a discussion and/or proof. Just click the redlink and start the page.

If you just came in from Wikipedia, the rules about treating each other with respect and obeying copyright laws remain more or less the same as on Wikipedia, but the definition of what constitutes an acceptable article is a lot looser. Here we call them "resources". Welcome to the wacky world of Wikiversity, where anything goes.

## Transformations between coordinates

1. w:Cartesian coordinates (x, y, z)
2. w:Cylindrical coordinates (ρ, ϕ, z)
3. w:Spherical coordinates (r, θ, ϕ)
4. w:Parabolic cylindrical coordinates (σ, τ, z)

### Coordinate variable transformations*

*Asterisk indicates that the title is a link to more discussion

#### Cylindrical from Cartesian variable transformation

${\displaystyle \rho ={\sqrt {x^{2}+y^{2}}}}$   ,     ${\displaystyle \phi =\arctan(y/x)}$   ,     ${\displaystyle z=z}$ verified using mathworld[1]

#### Cartesian from cylindrical variable transformation

${\displaystyle x=\rho \cos \phi }$   ,     ${\displaystyle y=\rho \sin \phi }$   ,     ${\displaystyle z=z}$  verified using mathworld[2]

#### Cartesian from spherical variable transformation

${\displaystyle x=r\sin \theta \cos \phi }$   ,     ${\displaystyle y=r\sin \theta \sin \phi }$   ,     ${\displaystyle z=r\cos \theta }$ verified using mathworld[3]

#### Cartesian from parabolic cylindrical variable transformation

${\displaystyle x=\sigma \tau }$   ,     ${\displaystyle y={\tfrac {1}{2}}\left(\tau ^{2}-\sigma ^{2}\right)}$   ,     ${\displaystyle z=z}$ --no reference

#### Spherical from Cartesian variable transformation

${\displaystyle r={\sqrt {x^{2}+y^{2}+z^{2}}}}$   ,     ${\displaystyle \theta =\arctan({\sqrt {x^{2}+y^{2}}}/z)}$   ,     ${\displaystyle \phi =\arctan(y/x)}$ verified using mathworld[4]

#### Spherical from cylindrical variable transformation

${\displaystyle r={\sqrt {\rho ^{2}+z^{2}}}}$   ,     ${\displaystyle \theta =\arctan {(\rho /z)}}$   ,     ${\displaystyle \phi =\phi }$ no reference

#### Cylindrical from spherical variable transformation

${\displaystyle \rho =r\sin \theta }$   ,     ${\displaystyle \phi =\phi }$   ,     ${\displaystyle z=r\cos \theta }$ no reference

#### Cylindrical from parabolic cylindrical variable transformation

${\displaystyle \rho \cos \phi =\sigma \tau }$   ,     ${\displaystyle \rho \sin \phi ={\tfrac {1}{2}}\left(\tau ^{2}-\sigma ^{2}\right)}$   ,     ${\displaystyle z=z}$ no reference

### Unit vectors

#### Cylindrical from Cartesian unit vectors

{\displaystyle {\begin{aligned}{\hat {\boldsymbol {\rho }}}&={\frac {x{\hat {\mathbf {x} }}+y{\hat {\mathbf {y} }}}{\sqrt {x^{2}+y^{2}}}}\\{\hat {\boldsymbol {\phi }}}&={\frac {-y{\hat {\mathbf {x} }}+x{\hat {\mathbf {y} }}}{\sqrt {x^{2}+y^{2}}}}\\{\hat {\mathbf {z} }}&={\hat {\mathbf {z} }}\end{aligned}}}  Verified, see page linked in title

#### Cartesian from cylindrical unit vectors

{\displaystyle {\begin{aligned}{\hat {\mathbf {x} }}&=\cos \phi {\hat {\boldsymbol {\rho }}}-\sin \phi {\hat {\boldsymbol {\phi }}}\\{\hat {\mathbf {y} }}&=\sin \phi {\hat {\boldsymbol {\rho }}}+\cos \phi {\hat {\boldsymbol {\phi }}}\\{\hat {\mathbf {z} }}&={\hat {\mathbf {z} }}\end{aligned}}}  Verified, see page linked in title

#### Cartesian from spherical unit vectors

{\displaystyle {\begin{aligned}{\hat {\mathbf {x} }}&=\sin \theta \cos \phi {\hat {\boldsymbol {r}}}+\cos \theta \cos \phi {\hat {\boldsymbol {\theta }}}-\sin \phi {\hat {\boldsymbol {\phi }}}\\{\hat {\mathbf {y} }}&=\sin \theta \sin \phi {\hat {\boldsymbol {r}}}+\cos \theta \sin \phi {\hat {\boldsymbol {\theta }}}+\cos \phi {\hat {\boldsymbol {\phi }}}\\{\hat {\mathbf {z} }}&=\cos \theta {\hat {\boldsymbol {r}}}-\sin \theta {\hat {\boldsymbol {\theta }}}\end{aligned}}}  Verified, see page linked in title

#### Parabolic cylindrical from Cartesian unit vectors

{\displaystyle {\begin{aligned}{\hat {\boldsymbol {\sigma }}}&={\frac {\tau {\hat {\mathbf {x} }}-\sigma {\hat {\mathbf {y} }}}{\sqrt {\tau ^{2}+\sigma ^{2}}}}\\{\hat {\boldsymbol {\tau }}}&={\frac {\sigma {\hat {\mathbf {x} }}+\tau {\hat {\mathbf {y} }}}{\sqrt {\tau ^{2}+\sigma ^{2}}}}\\{\hat {\mathbf {z} }}&={\hat {\mathbf {z} }}\end{aligned}}}

#### Spherical from Cartesian unit vectors

{\displaystyle {\begin{aligned}{\hat {\mathbf {r} }}&={\frac {x{\hat {\mathbf {x} }}+y{\hat {\mathbf {y} }}+z{\hat {\mathbf {z} }}}{\sqrt {x^{2}+y^{2}+z^{2}}}}\\{\hat {\boldsymbol {\theta }}}&={\frac {xz{\hat {\mathbf {x} }}+yz{\hat {\mathbf {y} }}-\left(x^{2}+y^{2}\right){\hat {\mathbf {z} }}}{{\sqrt {x^{2}+y^{2}}}{\sqrt {x^{2}+y^{2}+z^{2}}}}}\\{\hat {\boldsymbol {\phi }}}&={\frac {-y{\hat {\mathbf {x} }}+x{\hat {\mathbf {y} }}}{\sqrt {x^{2}+y^{2}}}}\end{aligned}}} Verified, see page linked in title

#### Spherical from cylindrical unit vectors

{\displaystyle {\begin{aligned}{\hat {\mathbf {r} }}&={\frac {\rho {\hat {\boldsymbol {\rho }}}+z{\hat {\mathbf {z} }}}{\sqrt {\rho ^{2}+z^{2}}}}\\{\hat {\boldsymbol {\theta }}}&={\frac {z{\hat {\boldsymbol {\rho }}}-\rho {\hat {\mathbf {z} }}}{\sqrt {\rho ^{2}+z^{2}}}}\\{\hat {\boldsymbol {\phi }}}&={\hat {\boldsymbol {\phi }}}\end{aligned}}}

#### Cylindrical from spherical unit vectors

{\displaystyle {\begin{aligned}{\hat {\boldsymbol {\rho }}}&=\sin \theta {\hat {\mathbf {r} }}+\cos \theta {\hat {\boldsymbol {\theta }}}\\{\hat {\boldsymbol {\phi }}}&={\hat {\boldsymbol {\phi }}}\\{\hat {\mathbf {z} }}&=\cos \theta {\hat {\mathbf {r} }}-\sin \theta {\hat {\boldsymbol {\theta }}}\end{aligned}}}

## Vector and scalar fields

${\displaystyle \mathbf {A} }$ is vector field and f is a scalar field. The vector field can be expressed as:

1. ${\displaystyle A_{x}{\hat {\mathbf {x} }}+A_{y}{\hat {\mathbf {y} }}+A_{z}{\hat {\mathbf {z} }}}$
2. ${\displaystyle A_{\rho }{\hat {\boldsymbol {\rho }}}+A_{\phi }{\hat {\boldsymbol {\phi }}}+A_{z}{\hat {\mathbf {z} }}}$
3. ${\displaystyle A_{r}{\hat {\boldsymbol {r}}}+A_{\theta }{\hat {\boldsymbol {\theta }}}+A_{\phi }{\hat {\boldsymbol {\phi }}}}$
4. ${\displaystyle A_{\sigma }{\hat {\boldsymbol {\sigma }}}+A_{\tau }{\hat {\boldsymbol {\tau }}}+A_{\phi }{\hat {\mathbf {z} }}}$

### Gradient of a scalar field

${\displaystyle \nabla f}$ is the w:gradient of a scalar field.

1. ${\displaystyle {\partial f \over \partial x}{\hat {\mathbf {x} }}+{\partial f \over \partial y}{\hat {\mathbf {y} }}+{\partial f \over \partial z}{\hat {\mathbf {z} }}}$
2. ${\displaystyle {\partial f \over \partial \rho }{\hat {\boldsymbol {\rho }}}+{1 \over \rho }{\partial f \over \partial \phi }{\hat {\boldsymbol {\phi }}}+{\partial f \over \partial z}{\hat {\mathbf {z} }}}$
3. ${\displaystyle {\partial f \over \partial r}{\hat {\boldsymbol {r}}}+{1 \over r}{\partial f \over \partial \theta }{\hat {\boldsymbol {\theta }}}+{1 \over r\sin \theta }{\partial f \over \partial \phi }{\hat {\boldsymbol {\phi }}}}$
4. ${\displaystyle {\frac {1}{\sqrt {\sigma ^{2}+\tau ^{2}}}}{\partial f \over \partial \sigma }{\hat {\boldsymbol {\sigma }}}+{\frac {1}{\sqrt {\sigma ^{2}+\tau ^{2}}}}{\partial f \over \partial \tau }{\hat {\boldsymbol {\tau }}}+{\partial f \over \partial z}{\hat {\mathbf {z} }}}$

### Divergence of a vector field*

${\displaystyle \nabla \cdot \mathbf {A} }$ is the w:divergence of a vector field

1. ${\displaystyle {\partial A_{x} \over \partial x}+{\partial A_{y} \over \partial y}+{\partial A_{z} \over \partial z}}$
2. ${\displaystyle {1 \over \rho }{\partial \left(\rho A_{\rho }\right) \over \partial \rho }+{1 \over \rho }{\partial A_{\phi } \over \partial \phi }+{\partial A_{z} \over \partial z}}$
3. ${\displaystyle {1 \over r^{2}}{\partial \left(r^{2}A_{r}\right) \over \partial r}+{1 \over r\sin \theta }{\partial \over \partial \theta }\left(A_{\theta }\sin \theta \right)+{1 \over r\sin \theta }{\partial A_{\phi } \over \partial \phi }}$
4. ${\displaystyle {\frac {1}{\sigma ^{2}+\tau ^{2}}}\left({\partial ({\sqrt {\sigma ^{2}+\tau ^{2}}}A_{\sigma }) \over \partial \sigma }+{\partial ({\sqrt {\sigma ^{2}+\tau ^{2}}}A_{\tau }) \over \partial \tau }\right)+{\partial A_{z} \over \partial z}}$

### Curl of a vector field

${\displaystyle \nabla \times \mathbf {A} }$ is the w:curl (mathematics) of A

1. ${\displaystyle \left({\frac {\partial A_{z}}{\partial y}}-{\frac {\partial A_{y}}{\partial z}}\right){\hat {\mathbf {x} }}+\left({\frac {\partial A_{x}}{\partial z}}-{\frac {\partial A_{z}}{\partial x}}\right){\hat {\mathbf {y} }}+\left({\frac {\partial A_{y}}{\partial x}}-{\frac {\partial A_{x}}{\partial y}}\right){\hat {\mathbf {z} }}}$
2. ${\displaystyle \left({\frac {1}{\rho }}{\frac {\partial A_{z}}{\partial \phi }}-{\frac {\partial A_{\phi }}{\partial z}}\right){\hat {\boldsymbol {\rho }}}+\left({\frac {\partial A_{\rho }}{\partial z}}-{\frac {\partial A_{z}}{\partial \rho }}\right){\hat {\boldsymbol {\phi }}}+{\frac {1}{\rho }}\left({\frac {\partial \left(\rho A_{\phi }\right)}{\partial \rho }}-{\frac {\partial A_{\rho }}{\partial \phi }}\right){\hat {\mathbf {z} }}}$
3. ${\displaystyle {\frac {1}{r\sin \theta }}\left({\frac {\partial }{\partial \theta }}\left(A_{\phi }\sin \theta \right)-{\frac {\partial A_{\theta }}{\partial \phi }}\right){\hat {\boldsymbol {r}}}+{\frac {1}{r}}\left({\frac {1}{\sin \theta }}{\frac {\partial A_{r}}{\partial \phi }}-{\frac {\partial }{\partial r}}\left(rA_{\phi }\right)\right){\hat {\boldsymbol {\theta }}}+{\frac {1}{r}}\left({\frac {\partial }{\partial r}}\left(rA_{\theta }\right)-{\frac {\partial A_{r}}{\partial \theta }}\right){\hat {\boldsymbol {\phi }}}}$
4. ${\displaystyle \left({\frac {1}{\sqrt {\sigma ^{2}+\tau ^{2}}}}{\frac {\partial A_{z}}{\partial \tau }}-{\frac {\partial A_{\tau }}{\partial z}}\right){\hat {\boldsymbol {\sigma }}}-\left({\frac {1}{\sqrt {\sigma ^{2}+\tau ^{2}}}}{\frac {\partial A_{z}}{\partial \sigma }}-{\frac {\partial A_{\sigma }}{\partial z}}\right){\hat {\boldsymbol {\tau }}}}$${\displaystyle +{\frac {1}{\sqrt {\sigma ^{2}+\tau ^{2}}}}\left({\frac {\partial \left({\sqrt {\sigma ^{2}+\tau ^{2}}}A_{\sigma }\right)}{\partial \tau }}-{\frac {\partial \left({\sqrt {\sigma ^{2}+\tau ^{2}}}A_{\tau }\right)}{\partial \sigma }}\right){\hat {\mathbf {z} }}}$

### Laplacian of a scalar field

${\displaystyle \Delta f\equiv \nabla ^{2}f}$ is the w:Laplace operator on a scalar field

1. ${\displaystyle {\partial ^{2}f \over \partial x^{2}}+{\partial ^{2}f \over \partial y^{2}}+{\partial ^{2}f \over \partial z^{2}}}$
2. ${\displaystyle {1 \over \rho }{\partial \over \partial \rho }\left(\rho {\partial f \over \partial \rho }\right)+{1 \over \rho ^{2}}{\partial ^{2}f \over \partial \phi ^{2}}+{\partial ^{2}f \over \partial z^{2}}}$
3. ${\displaystyle {1 \over r^{2}}{\partial \over \partial r}\!\left(r^{2}{\partial f \over \partial r}\right)\!+\!{1 \over r^{2}\!\sin \theta }{\partial \over \partial \theta }\!\left(\sin \theta {\partial f \over \partial \theta }\right)\!+\!{1 \over r^{2}\!\sin ^{2}\theta }{\partial ^{2}f \over \partial \phi ^{2}}}$
4. ${\displaystyle {\frac {1}{\sigma ^{2}+\tau ^{2}}}\left({\frac {\partial ^{2}f}{\partial \sigma ^{2}}}+{\frac {\partial ^{2}f}{\partial \tau ^{2}}}\right)+{\frac {\partial ^{2}f}{\partial z^{2}}}}$

### Laplacian of a vector field

${\displaystyle \Delta \mathbf {A} \equiv \nabla ^{2}\mathbf {A} }$ is the w:Vector Laplacian of ${\displaystyle \mathbf {A} }$

1. ${\displaystyle \Delta A_{x}{\hat {\mathbf {x} }}+\Delta A_{y}{\hat {\mathbf {y} }}+\Delta A_{z}{\hat {\mathbf {z} }}}$
2. ${\displaystyle {\mathopen {}}\left(\Delta A_{\rho }-{\frac {A_{\rho }}{\rho ^{2}}}-{\frac {2}{\rho ^{2}}}{\frac {\partial A_{\phi }}{\partial \phi }}\right){\mathclose {}}{\hat {\boldsymbol {\rho }}}}$${\displaystyle +{\mathopen {}}\left(\Delta A_{\phi }-{\frac {A_{\phi }}{\rho ^{2}}}+{\frac {2}{\rho ^{2}}}{\frac {\partial A_{\rho }}{\partial \phi }}\right){\mathclose {}}{\hat {\boldsymbol {\phi }}}}$${\displaystyle +\Delta A_{z}{\hat {\mathbf {z} }}}$
3. ${\displaystyle \left(\Delta A_{r}-{\frac {2A_{r}}{r^{2}}}-{\frac {2}{r^{2}\sin \theta }}{\frac {\partial \left(A_{\theta }\sin \theta \right)}{\partial \theta }}-{\frac {2}{r^{2}\sin \theta }}{\frac {\partial A_{\phi }}{\partial \phi }}\right){\hat {\boldsymbol {r}}}}$${\displaystyle +\left(\Delta A_{\theta }-{\frac {A_{\theta }}{r^{2}\sin ^{2}\theta }}+{\frac {2}{r^{2}}}{\frac {\partial A_{r}}{\partial \theta }}-{\frac {2\cos \theta }{r^{2}\sin ^{2}\theta }}{\frac {\partial A_{\phi }}{\partial \phi }}\right){\hat {\boldsymbol {\theta }}}}$${\displaystyle +\left(\Delta A_{\phi }-{\frac {A_{\phi }}{r^{2}\sin ^{2}\theta }}+{\frac {2}{r^{2}\sin \theta }}{\frac {\partial A_{r}}{\partial \phi }}+{\frac {2\cos \theta }{r^{2}\sin ^{2}\theta }}{\frac {\partial A_{\theta }}{\partial \phi }}\right){\hat {\boldsymbol {\phi }}}}$

### Material derivative of a vector field

${\displaystyle (\mathbf {A} \cdot \nabla )\mathbf {B} }$ might be called the "convective derivative of B along A" (appropriate description if A' is a unit vector) [5]

1. ${\displaystyle \left(A_{x}{\frac {\partial B_{x}}{\partial x}}+A_{y}{\frac {\partial B_{x}}{\partial y}}+A_{z}{\frac {\partial B_{x}}{\partial z}}\right){\hat {\mathbf {x} }}}$${\displaystyle +\left(A_{x}{\frac {\partial B_{y}}{\partial x}}+A_{y}{\frac {\partial B_{y}}{\partial y}}+A_{z}{\frac {\partial B_{y}}{\partial z}}\right){\hat {\mathbf {y} }}}$${\displaystyle +\left(A_{x}{\frac {\partial B_{z}}{\partial x}}+A_{y}{\frac {\partial B_{z}}{\partial y}}+A_{z}{\frac {\partial B_{z}}{\partial z}}\right){\hat {\mathbf {z} }}}$
2. ${\displaystyle \left(A_{\rho }{\frac {\partial B_{\rho }}{\partial \rho }}+{\frac {A_{\phi }}{\rho }}{\frac {\partial B_{\rho }}{\partial \phi }}+A_{z}{\frac {\partial B_{\rho }}{\partial z}}-{\frac {A_{\phi }B_{\phi }}{\rho }}\right){\hat {\boldsymbol {\rho }}}}$${\displaystyle +\left(A_{\rho }{\frac {\partial B_{\phi }}{\partial \rho }}+{\frac {A_{\phi }}{\rho }}{\frac {\partial B_{\phi }}{\partial \phi }}+A_{z}{\frac {\partial B_{\phi }}{\partial z}}+{\frac {A_{\phi }B_{\rho }}{\rho }}\right){\hat {\boldsymbol {\phi }}}}$${\displaystyle +\left(A_{\rho }{\frac {\partial B_{z}}{\partial \rho }}+{\frac {A_{\phi }}{\rho }}{\frac {\partial B_{z}}{\partial \phi }}+A_{z}{\frac {\partial B_{z}}{\partial z}}\right){\hat {\mathbf {z} }}}$
3. ${\displaystyle \left(A_{r}{\frac {\partial B_{r}}{\partial r}}+{\frac {A_{\theta }}{r}}{\frac {\partial B_{r}}{\partial \theta }}+{\frac {A_{\phi }}{r\sin \theta }}{\frac {\partial B_{r}}{\partial \phi }}-{\frac {A_{\theta }B_{\theta }+A_{\phi }B_{\phi }}{r}}\right){\hat {\boldsymbol {r}}}}$${\displaystyle +\left(A_{r}{\frac {\partial B_{\theta }}{\partial r}}+{\frac {A_{\theta }}{r}}{\frac {\partial B_{\theta }}{\partial \theta }}+{\frac {A_{\phi }}{r\sin \theta }}{\frac {\partial B_{\theta }}{\partial \phi }}+{\frac {A_{\theta }B_{r}}{r}}-{\frac {A_{\phi }B_{\phi }\cot \theta }{r}}\right){\hat {\boldsymbol {\theta }}}}$${\displaystyle +\left(A_{r}{\frac {\partial B_{\phi }}{\partial r}}+{\frac {A_{\theta }}{r}}{\frac {\partial B_{\phi }}{\partial \theta }}+{\frac {A_{\phi }}{r\sin \theta }}{\frac {\partial B_{\phi }}{\partial \phi }}+{\frac {A_{\phi }B_{r}}{r}}+{\frac {A_{\phi }B_{\theta }\cot \theta }{r}}\right){\hat {\boldsymbol {\phi }}}}$

### Differential displacement

1. ${\displaystyle d\mathbf {l} =dx\,{\hat {\mathbf {x} }}+dy\,{\hat {\mathbf {y} }}+dz\,{\hat {\mathbf {z} }}}$
2. ${\displaystyle d\mathbf {l} =d\rho \,{\hat {\boldsymbol {\rho }}}+\rho \,d\phi \,{\hat {\boldsymbol {\phi }}}+dz\,{\hat {\mathbf {z} }}}$
3. ${\displaystyle d\mathbf {l} =dr\,{\hat {\mathbf {r} }}+r\,d\theta \,{\hat {\boldsymbol {\theta }}}+r\,\sin \theta \,d\phi \,{\hat {\boldsymbol {\phi }}}}$
4. ${\displaystyle d\mathbf {l} ={\sqrt {\sigma ^{2}+\tau ^{2}}}\,d\sigma \,{\hat {\boldsymbol {\sigma }}}+{\sqrt {\sigma ^{2}+\tau ^{2}}}\,d\tau \,{\hat {\boldsymbol {\tau }}}+dz\,{\hat {\mathbf {z} }}}$

### Differential normal areas

Differential normal area ${\displaystyle d\mathbf {S} }$

1. ${\displaystyle dy\,dz{\hat {\mathbf {x} }}+dx\,dz{\hat {\mathbf {y} }}+dx\,dy{\hat {\mathbf {z} }}}$
2. ${\displaystyle \rho \,d\phi \,dz{\hat {\boldsymbol {\rho }}}+d\rho \,dz{\hat {\boldsymbol {\phi }}}+\rho \,d\rho \,d\phi {\hat {\mathbf {z} }}}$
3. ${\displaystyle r^{2}\sin \theta \,d\theta \,d\phi {\hat {\mathbf {r} }}+r\sin \theta \,dr\,d\phi {\hat {\boldsymbol {\theta }}}+r\,dr\,d\theta {\hat {\boldsymbol {\phi }}}}$
4. ${\displaystyle {\sqrt {\sigma ^{2}+\tau ^{2}}}\,d\tau \,dz{\hat {\boldsymbol {\sigma }}}+{\sqrt {\sigma ^{2}+\tau ^{2}}}\,d\sigma \,dz{\hat {\boldsymbol {\tau }}}+\left(\sigma ^{2}+\tau ^{2}\right)\,d\sigma \,d\tau {\hat {\mathbf {z} }}}$

### Differential volume

1. ${\displaystyle dV=dx\,dy\,dz}$ verified[6]
2. ${\displaystyle dV=\rho \,d\rho \,d\phi \,dz}$ verified[7]
3. ${\displaystyle dV=r^{2}\sin \theta \,dr\,d\theta \,d\phi }$ verified[8]
4. ${\displaystyle dV=\left(\sigma ^{2}+\tau ^{2}\right)d\sigma \,d\tau \,dz}$

### nabla's on nabla's

Non-trivial calculation rules:

1. ${\displaystyle \operatorname {div} \,\operatorname {grad} f\equiv \nabla \cdot \nabla f=\nabla ^{2}f\equiv \Delta f}$
2. ${\displaystyle \operatorname {curl} \,\operatorname {grad} f\equiv \nabla \times \nabla f=\mathbf {0} }$
3. ${\displaystyle \operatorname {div} \,\operatorname {curl} \mathbf {A} \equiv \nabla \cdot (\nabla \times \mathbf {A} )=0}$
4. ${\displaystyle \operatorname {curl} \,\operatorname {curl} \mathbf {A} \equiv \nabla \times (\nabla \times \mathbf {A} )=\nabla (\nabla \cdot \mathbf {A} )-\nabla ^{2}\mathbf {A} }$ (Lagrange's formula for del)
5. ${\displaystyle \Delta (fg)=f\Delta g+2\nabla f\cdot \nabla g+g\Delta f}$

## References

1. http://mathworld.wolfram.com/CylindricalCoordinates.html
2. http://mathworld.wolfram.com/CylindricalCoordinates.html
3. http://mathworld.wolfram.com/SphericalCoordinates.html
4. http://mathworld.wolfram.com/SphericalCoordinates.html
5. Cite error: Invalid <ref> tag; no text was provided for refs named Mathworld
6. James Stewart, Calculus: Concepts and Contexts, fourth edition, Brooks Cole 2005 pp. 884-5
7. James Stewart, Calculus: Concepts and Contexts, fourth edition, Brooks Cole 2005 pp. 884-5
8. James Stewart, Calculus: Concepts and Contexts, fourth edition, Brooks Cole 2005 pp. 884-5

1. Weisstein, Eric W. "Convective Operator". Mathworld. Retrieved 23 March 2011.
2. Huba J.D. (1994). "NRL Plasma Formulary revised" (PDF). Office of Naval Research. Retrieved 11 June 2014.

## Backup copy from Wikipedia

Copy or read but never change Original Copy from Wikipedia