Jump to content

Boolf prop/3-ary/Zhegalkin linear

From Wikiversity
The Zhegalkin linear is almost the same as the prefect of the reverse.
The Walsh index is always the same.
The negator is the same, iff the weight of the Walsh index is even.

Number of blocks:   16 Integer partition:   1616

# Zhegalkin
linear
reverse
prefect
block
16 0, 0

0
0, 0

0
[0, 8, 32, 40, 64, 72, 96, 104, 128, 136, 160, 168, 192, 200, 224, 232]
16 7, 1

¬7
7, 0

7
[1, 9, 33, 41, 65, 73, 97, 105, 129, 137, 161, 169, 193, 201, 225, 233]
16 1, 0

1
1, 1

¬1
[2, 10, 34, 42, 66, 74, 98, 106, 130, 138, 162, 170, 194, 202, 226, 234]
16 6, 1

¬6
6, 1

¬6
[3, 11, 35, 43, 67, 75, 99, 107, 131, 139, 163, 171, 195, 203, 227, 235]
16 2, 0

2
2, 1

¬2
[4, 12, 36, 44, 68, 76, 100, 108, 132, 140, 164, 172, 196, 204, 228, 236]
16 5, 1

¬5
5, 1

¬5
[5, 13, 37, 45, 69, 77, 101, 109, 133, 141, 165, 173, 197, 205, 229, 237]
16 3, 0

3
3, 0

3
[6, 14, 38, 46, 70, 78, 102, 110, 134, 142, 166, 174, 198, 206, 230, 238]
16 4, 1

¬4
4, 0

4
[7, 15, 39, 47, 71, 79, 103, 111, 135, 143, 167, 175, 199, 207, 231, 239]
16 4, 0

4
4, 1

¬4
[16, 24, 48, 56, 80, 88, 112, 120, 144, 152, 176, 184, 208, 216, 240, 248]
16 3, 1

¬3
3, 1

¬3
[17, 25, 49, 57, 81, 89, 113, 121, 145, 153, 177, 185, 209, 217, 241, 249]
16 5, 0

5
5, 0

5
[18, 26, 50, 58, 82, 90, 114, 122, 146, 154, 178, 186, 210, 218, 242, 250]
16 2, 1

¬2
2, 0

2
[19, 27, 51, 59, 83, 91, 115, 123, 147, 155, 179, 187, 211, 219, 243, 251]
16 6, 0

6
6, 0

6
[20, 28, 52, 60, 84, 92, 116, 124, 148, 156, 180, 188, 212, 220, 244, 252]
16 1, 1

¬1
1, 0

1
[21, 29, 53, 61, 85, 93, 117, 125, 149, 157, 181, 189, 213, 221, 245, 253]
16 7, 0

7
7, 1

¬7
[22, 30, 54, 62, 86, 94, 118, 126, 150, 158, 182, 190, 214, 222, 246, 254]
16 0, 1

¬0
0, 1

¬0
[23, 31, 55, 63, 87, 95, 119, 127, 151, 159, 183, 191, 215, 223, 247, 255]