Jump to content

Beat (acoustics)/Literature search

From Wikiversity

Beat (acoustics)   /Phase beats   /Literature search   /Just fifth displace stretch   /Exact phase beats   /Differential equations   subpages   drafts  

Signal processing of audicity files

[edit | edit source]

LINKS

Perception of consonance

[edit | edit source]
  1. Abel, M., Ahnert, K., and Bergweiler, S. (2009). Synchronization of sound sources. Phys. Rev. Lett. 103:114301. doi: 10.1103/PhysRevLett.103.114301 Loudspeaker and organ pipe experiment. Equations impossible to understand.
  2. Benade, A. H. (1973). The physics of brasses. Sci. Am. 229, 24–35. doi: 10.1038/scientificamerican0773-24
  3. Bidelman, G. M., and Heinz, M. G. (2011). Auditory-nerve responses predict pitch attributes related to musical consonance-dissonance for normal and impaired hearing. J. Acoust. Soc. Am. 130, 1488–1502. doi: 10.1121/1.3605559
  4. Bidelman, G. M., and Krishnan, A. (2009). Neural correlates of consonance, dissonance, and the hierarchy of musical pitch in the human brainstem. J. Neurosci. 29, 13165–13171. doi: 10.1523/JNEUROSCI.3900-09.2009
  5. Bowling, D. L., Hoeschele, M., Kamraan, Z. G., and Tecumseh Fitch, W. (2017). The nature and nurture of musical consonance. Music Percept. 35, 118–121. doi: 10.1525/mp.2017.35.1.118
  6. Bowling, D. L., and Purves, D. (2015). A biological rationale for musical consonance. Proc. Natl. Acad. Sci. U.S.A. 112, 11155–11160. doi: 10.1073/pnas.1505768112
  7. Cartwright, J. H. E., Douthettb, J., González, D. L., Krantzd, R., and Piro, O. (2010). Two musical paths to the Farey series and devil’s staircase. J. Math. Music 4, 57–74. doi: 10.1080/17459737.2010.485001
  8. Cartwright, J. H. E., Gonzalez, D. L., and Piro, O. (2001). Pitch perception: a dynamical-systems perspective. Proc. Natl. Acad. Sci. U.S.A. 98, 4855–4859. doi: 10.1073/pnas.081070998
  9. Cartwright, J. H. E., Gonzalez, D. L., Piro, O., and Stanziali, D. (2002). Aesthetics, dynamics, and musical scales: a golden connection. J. New Music Res. 31, 51–58. doi: 10.1076/jnmr.31.1.51.8099
  10. Cross, I. (2003). Music as a biocultural phenomenon. Ann. N. Y. Acad. Sci. 999, 106–111. doi: 10.1196/annals.1284.010
  11. Di Stefano, N., Focaroli, V., Giuliani, A., Formica, D., Taffoni, F., and Keller, F. (2017). A new research method to test auditory preferences in young listeners: results from a consonance versus dissonance perception study. Psychol. Music 45, 699–712. doi: 10.1177/0305735616681205
  12. Eckmann, J. P., Kamphorst, S. O., and Ruelle, D. (1987). Recurrence plots of dynamical systems. Europhys. Lett. 4, 973–976. doi: 10.1209/0295-5075/4/9/004
  13. Fastl, H., and Zwicker, E. (2006). Psychoacoustic. Facts and Models. Berlin: Springer.
  14. Foo, F., King-Stephens, D., Weber, P., Laxer, K., Parvizi, J., and Knight, R. T. (2016). Differential processing of consonance and dissonance within the human superior temporal gyrus. Front. Hum. Neurosci. 10:154. doi: 10.3389/fnhum.2016.00154
  15. Frova, A. (1999). Fisica nella Musica. Bologna: Zanichelli.
  16. González-García, N., González, M. A., and Rendón, P. L. (2016). Neural activity related to discrimination and vocal production of consonant and dissonant musical intervals. Brain Res. 1643, 59–69. doi: 10.1016/j.brainres.2016.04.065
  17. Helmholtz, H. (1954). On the Sensations of Tone. New York, NY: Dover Publications.
  18. Kameoka, A., and Kuriyagawa, M. (1969a). Consonance theory part I: consonance of dyads. J. Acoust. Soc. Am. 45, 1451–1459. doi: 10.1121/1.1911623
  19. Kameoka, A., and Kuriyagawa, M. (1969b). Consonance theory part II: consonance of complex tones and its calculation method. J. Acoust. Soc. Am. 45, 1460–1469. doi: 10.1121/1.1911624
  20. Kennel, M. B., Brown, R., and Abarbanel, H. D. (1992). Determining embedding dimension for phase-space reconstruction using a geometrical construction. Phys. Rev. A 45, 3403. doi: 10.1103/PhysRevA.45.3403
  21. Koelsch, S., Fritz, T., Schulze, K., Alsop, D., and Schlaug, G. (2005). Adults and children processing music: An fMRI study. Neuroimage 25, 1068–1076. doi: 10.1016/j.neuroimage.2004.12.050
  22. Koelsch, S., and Mulder, J. (2002). Electric brain responses to inappropriate harmonies during listening to expressive music. Clin. Neurophysiol. 113, 862–869. doi: 10.1016/S1388-2457(02)00050-0
  23. Large, E. W., and Almonte, F. V. (2012). Neurodynamics, tonality, and the auditory brainstem response. Ann. N. Y. Acad. Sci. 1252, E1–E7. doi: 10.1111/j.1749-6632.2012.06594.x
  24. Large, E. W., and Tretakis, A. E. (2005). Tonality and nonlinear resonance. Ann. N. Y. Acad. Sci. 1060, 53–56. doi: 10.1196/annals.1360.046
  25. Lohri, A. (2016). Kombinationstöne und Tartinis “terzo suono”. Mainz: Schott Music.
  26. Lots, I. S., and Stone, L. (2008). Perception of musical consonance and dissonance: an outcome of neural synchronization. J. R. Soc. Interface 5, 1429–1434. doi: 10.1098/rsif.2008.0143
  27. Manetti, C., Ceruso, M. A., Giuliani, A., Webber, C. L. Jr., and Zbilut, J. P. (1999). Recurrence quantification analysis as a tool for characterization of molecular dynamics simulations. Phys. Rev. E 59, 992–998. doi: 10.1103/PhysRevE.59.992
  28. Marwan, N., Romano, M. C., Thiel, M., and Kurths, J. (2007). Recurrence plots for the analysis of complex systems. Phys. Rep. 438, 237–329. doi: 10.1016/j.physrep.2006.11.001
  29. McCauley, J. L. (1994). Chaos, Dynamics and Fractals. Cambridge: Cambridge University Press.
  30. McDermott, J., Schultz, A. F., Undurraga, E. A., and Godoy, R. A. (2016). Indifference to dissonance in native Amazonians reveals cultural variations in music perception. Nature 535, 547–550. doi: 10.1038/nature18635
  31. Minati, L., Rosazza, C., D’Incerti, L., Pietrocini, E., Valentini, L., Scaioli, V., et al. (2008). FMRI/ERP of musical syntax: comparison of melodies and unstructured note sequences. Neuroreport 19, 1381–1385. doi: 10.1097/WNR.0b013e32830c694b
  32. Nikolsky, A. (2015). Evolution of tonal organization in music mirrors symbolic representation of perceptual reality. Part-1: prehistoric. Front. Psychol. 6:1405. doi: 10.3389/fpsyg.2015.01405
  33. Orsucci, F., Giuliani, A., Webber, C., Zbilut, J., Fonagy, P., and Mazza, M. (2006). Combinatorics and synchronization in natural semiotics. Phys. A Stat. Mech. Appl. 361, 665–676. doi: 10.1016/j.physa.2005.06.044
  34. Pankovski, T., and Pankovska, E. (2017). Emergence of the consonance pattern within synaptic weights of a neural network featuring Hebbian neuroplasticity. Biol. Insp. Cong. Arch. 22, 82–94. doi: 10.1016/j.bica.2017.09.001
  35. Park, J. Y., Park, H., Kim, J., and Park, H. J. (2011). Consonant chords stimulate higher EEG gamma activity than dissonant chords. Neurosci. Lett. 488, 101–105. doi: 10.1016/j.neulet.2010.11.011
  36. Parncutt, R., and Hair, G. (2011). Consonance and dissonance in theory and psychology: disentangling dissonant dichotomies. J. Interdiscip. Music Stud. 5, 119–166.
  37. Perani, D., Saccuman, M. C., Scifo, P., Spada, D., Andreolli, G., Rovelli, R., et al. (2010). Functional specializations for music processing in the human newborn brain. Proc. Natl. Acad. Sci. U.S.A. 107, 4758–4763. doi: 10.1073/pnas.0909074107
  38. Piana, G. (2007). Barlumi per una Filosofia Della Musica. Morrisville: Lulu Press.
  39. Plomp, R. (1976). Aspects of Tone Sensation: A Psychophysical Study. London: Academic Press.
  40. Roads, C. (2001). Microsound. Cambridge, MA: The MIT Press.
  41. Roederer, J. G. (2008). The Physics and Psychophysics of Music. New York, NY: Springer.
  42. Schroeder, M. (1990). Fractals, Chaos, Power Laws. New York, NY: W.H Freeman and Co.
  43. Schwartz, D. A., Howe, C. Q., and Purves, D. (2003). The statistical structure of human speech sounds predicts music universals. J. Neurosci. 23, 7160–7168.
  44. Serra, J., Serra, X., and Andrzejak, R. G. (2009). Cross recurrence quantification for cover song identification. New J. Phys. 11:093017. doi: 10.1088/1367-2630/11/9/093017
  45. Trulla, L. L., Giuliani, A., Zbilut, J. P., and Webber, C. L. (1996). Recurrence quantification analysis of the logistic equation with transients. Phys. Lett. A 223, 255–260. doi: 10.1016/S0375-9601(96)00741-4
  46. Trulla, L. L., Giuliani, A., Zimatore, G., Colosimo, A., and Zbilut, J. P. (2005). Non-linear assessment of musical consonance. Electron. J. Theor. Phys. 8, 22–34.
  47. Wang, X. (2013). The harmonic organization of auditory cortex. Front. Syst. Neurosci. 7:114. doi: 10.3389/fnsys.2013.00114
  48. Webber, C. L., and Zbilut, J. P. (1994). Dynamical assessment of physiological systems and states using recurrence plot strategies. J. Appl. Physiol. 76, 965–973. doi: 10.1152/jappl.1994.76.2.965
  49. Zimatore, G., Giuliani, A., Hatzopoulos, S., Martini, A., and Colosimo, A. (2003). Otoacoustic emissions at different click intensities: invariant and subject-dependent features. J. Appl. Physiol. 95, 2299–2305. doi: 10.1152/japplphysiol.00667.2003
  50. Zimatore, G., Hatzopoulos, S., Giuliani, A., Martini, A., and Colosimo, A. (2002). Comparison of transient otoacoustic emission (TEOAE) responses from neonatal and adult ears. J. Appl. Physiol. 92, 2521–2528. doi: 10.1152/japplphysiol.01163.2001

WJS Malmberg's ranking of consonance

[edit | edit source]
Tonal Consonance and Critical Bandwidth
R. PLOMP AND W. J. M. LEVELT
2:3, 3:5, 3:4 and 4:5, 5:8, 5:6, 5:7
C. V. Malmberg, "The Perception of Consonance and Dissonance," 
Psychol. Monogr. 25, No. 2, 93-133 (1917-1918). 

More Websites

[edit | edit source]

Main page items

[edit | edit source]

Mode locking

[edit | edit source]

Some of these will go into the Wiki Journal of Science article WJS Strogatz SH, Stewart I. Coupled oscillators and biological synchronization. Sci Am. 1993 Dec;269(6):102-9. doi: 10.1038/scientificamerican1293-102. PMID: 8266056.(link1 ) (link2)

YEA Fletcher, Neville H. "Mode locking in nonlinearly excited inharmonic musical oscillators." The Journal of the Acoustical Society of America 64.6 (1978): 1566-1569. (link2) An example of the complexity of nonlinear equations.

Fletcher, Neville H. "Sound production by organ flue pipes." The Journal of the Acoustical Society of America 60.4 (1976): 926-936. Again, no simple equation.

NO MIT thesis on Hodgkin-Huxley nothing not on Wikipedia.

WJS Pantaleone, James. "Synchronization of metronomes." American Journal of Physics 70.10 (2002): 992-1000.

Miscellaneous quotes

[edit | edit source]
  • Coombes, S., and Gabriel James Lord. "Intrinsic modulation of pulse-coupled integrate-and-fire neurons." Physical Review E 56.5 (1997): 5809. (link) ... rhythmic motor behavior... w:Hodgkin–Huxley model (4 nonlinear odes).
Tadpole quote: "For example, in the mollusc Tritonia and the tadpole Xenopus the escape swim behavior is generated in this fashion ... The study of coupled oscillators has applications in understanding CPG (central pattern generators) neuronal circuits ... "
Three of the 41 citing articles involve music:
  1. LotsStone coupled neural oscillators ... PROBLEMS WITH HELMHOLTZ'S THEORY ... See <ref name="LotsStone"/>
  2. Heffernan, B., and A. Longtin. "Pulse-coupled neuron models as investigative tools for musical consonance." Journal of Neuroscience Methods 183.1 (2009): 95-106. (link)
  3. Hadrava, Michal, and Jaroslav Hlinka. "A Dynamical Systems Approach to Spectral Music: Modeling the Role of Roughness and Inharmonicity in Perception of Musical Tension." Frontiers in Applied Mathematics and Statistics 6 (2020): 18.(link)

Scholarpedia

[edit | edit source]

Wikipedia

[edit | edit source]