∫ f ( x ) g ′ ( x ) d x = f ( x ) g ( x ) − ∫ f ′ ( x ) g ( x ) d x {\displaystyle \int f(x)g'(x)\,dx=f(x)g(x)-\int f'(x)g(x)\,dx}
To Find ∫ x e x d x {\displaystyle \int xe^{x}\,dx}
Let
then
To Find ∫ x 2 e x d x {\displaystyle \int x^{2}e^{x}\,dx}
by using the result from example 1
To find ∫ x 5 n e 2 x d x {\displaystyle \int x^{5}ne^{2}x\,dx}
here n is an integer
By mathematical induction and using the above two examples
Anish27 23:28, 10 November 2011 (UTC)