Regional secondary locators
A regional secondary locator forms part of a UK callsign and identifies which region the amateur radio station is being operated from. The regional secondary locator for England, the letter "E", is only used for callsigns beginning with the number "2".
An examination for each license is required and they must be taken in the following order:
Foundation
Intermediate
Full
There is no obligation to attend a formal training course for the advanced Full license. Unlike the Foundation and Intermediate licenses, there are no practical assessments. The exam takes the same form as that for the other licenses, being a multiple choice paper. There are 62 multiple choice questions. Candidates are provided with a sheet of the formulas. (see below)
Examinations can only be held on set dates every two months. Examinations are organised by amateur radio clubs and held at exam centres across the country, whether an exam will be held at a particular exam centre will be subject to demand.
R
T
=
R
1
+
R
2
+
R
3
{\displaystyle R_{T}=R_{1}+R_{2}+R_{3}}
1
R
T
=
1
R
1
+
1
R
2
+
1
R
3
{\displaystyle {\frac {1}{R_{T}}}={\frac {1}{R_{1}}}+{\frac {1}{R_{2}}}+{\frac {1}{R_{3}}}}
V
=
I
R
{\displaystyle V=IR}
V
o
u
t
=
V
i
n
R
2
R
1
+
R
2
{\displaystyle V_{out}=V_{in}{\frac {R_{2}}{R_{1}+R_{2}}}}
P
=
V
I
=
V
2
R
=
I
2
R
{\displaystyle P=VI={\frac {V^{2}}{R}}=I^{2}R}
V
r
m
s
=
V
p
e
a
k
2
{\displaystyle V_{rms}={\frac {V_{peak}}{\sqrt {2}}}}
1
C
T
=
1
C
1
+
1
C
2
+
1
C
3
{\displaystyle {\frac {1}{C_{T}}}={\frac {1}{C_{1}}}+{\frac {1}{C_{2}}}+{\frac {1}{C_{3}}}}
C
T
=
C
1
+
C
2
+
C
3
{\displaystyle C_{T}=C_{1}+C_{2}+C_{3}}
L
T
=
L
1
+
L
2
+
L
3
{\displaystyle L_{T}=L_{1}+L_{2}+L_{3}}
1
L
T
=
1
L
1
+
1
L
2
{\displaystyle {\frac {1}{L_{T}}}={\frac {1}{L_{1}}}+{\frac {1}{L_{2}}}}
Z
=
R
2
+
X
2
{\displaystyle Z={\sqrt {R^{2}+X^{2}}}}
V
T
=
V
R
2
+
V
C
2
(
o
r
V
L
2
)
{\displaystyle V_{T}={\sqrt {{V_{R}}^{2}+{V_{C}}^{2}}}\;\;(or\;{V_{L}}^{2})}
f
=
1
2
π
L
C
{\displaystyle f={\frac {1}{2\pi {\sqrt {LC}}}}}
T
=
1
f
{\displaystyle T={\frac {1}{f}}}
Q
=
2
π
f
L
R
{\displaystyle Q={\frac {2\pi fL}{R}}}
or
1
2
π
f
C
R
{\displaystyle {\frac {1}{2\pi fCR}}}
Q
=
f
C
f
U
−
F
L
=
c
e
n
t
r
e
f
r
e
q
u
e
n
c
y
b
a
n
d
w
i
d
t
h
{\displaystyle Q={\frac {f_{C}}{f_{U}-F_{L}}}={\frac {centre\,frequency}{bandwidth}}}
Q
=
2
π
f
C
R
D
{\displaystyle Q=2\pi fCR_{D}}
I
P
=
I
S
N
s
N
p
{\displaystyle I_{P}=I_{S}{\frac {N_{s}}{N_{p}}}}
V
S
=
V
P
N
s
N
p
{\displaystyle V_{S}=V_{P}{\frac {N_{s}}{N_{p}}}}
f
s
t
e
p
=
f
c
r
y
s
t
a
l
A
{\displaystyle f_{step}={\frac {f_{crystal}}{A}}}
I
C
=
β
I
B
{\displaystyle I_{C}=\beta I_{B}}
G
a
i
n
(
l
o
s
s
)
=
10
log
10
p
o
w
e
r
o
u
t
p
o
w
e
r
i
n
d
B
{\displaystyle Gain\,(loss)=10\log _{10}{\frac {power\,out}{power\,in}}\;dB}
c
=
3
×
10
8
m
/
s
{\displaystyle c=3\times 10^{8}\;m/s}
G
a
i
n
(
l
o
s
s
)
=
20
log
10
v
o
l
t
a
g
e
o
u
t
v
o
l
t
a
g
e
i
n
d
B
{\displaystyle Gain\,(loss)=20\log _{10}{\frac {voltage\,out}{voltage\,in}}\;dB}
v
=
f
λ
{\displaystyle v=f\lambda }
R
e
t
u
r
n
L
o
s
s
=
10
log
10
R
e
f
l
e
c
t
e
d
p
o
w
e
r
I
n
c
i
d
e
n
t
p
o
w
e
r
{\displaystyle Return\,Loss=10\log _{10}{\frac {Reflected\,power}{Incident\,power}}}
E
=
7
e
r
p
d
{\displaystyle E={\frac {7{\sqrt {erp}}}{d}}}
G
a
i
n
=
10
log
10
p
o
w
e
r
f
r
o
m
Y
a
g
i
p
o
w
e
r
f
r
o
m
d
i
p
o
l
e
d
B
d
{\displaystyle Gain=10\log _{10}{\frac {power\,from\,Yagi}{power\,from\,dipole}}\;dBd}
e
r
p
=
p
o
w
e
r
×
g
a
i
n
(
l
i
n
e
a
r
)
{\displaystyle erp=power\times gain\;(linear)}