Talk:PlanetPhysics/Laplace Transform of Dirac's Delta

From Wikiversity
Jump to navigation Jump to search

Original TeX Content from PlanetPhysics Archive[edit source]

%%% This file is part of PlanetPhysics snapshot of 2011-09-01
%%% Primary Title: Laplace transform of Dirac's delta distribution
%%% Primary Category Code: 00.
%%% Filename: LaplaceTransformOfDiracsDelta.tex
%%% Version: 27
%%% Owner: bci1
%%% Author(s): bci1
%%% PlanetPhysics is released under the GNU Free Documentation License.
%%% You should have received a file called fdl.txt along with this file.        
%%% If not, please write to gnu@gnu.org.
\documentclass[12pt]{article}
\pagestyle{empty}
\setlength{\paperwidth}{8.5in}
\setlength{\paperheight}{11in}

\setlength{\topmargin}{0.00in}
\setlength{\headsep}{0.00in}
\setlength{\headheight}{0.00in}
\setlength{\evensidemargin}{0.00in}
\setlength{\oddsidemargin}{0.00in}
\setlength{\textwidth}{6.5in}
\setlength{\textheight}{9.00in}
\setlength{\voffset}{0.00in}
\setlength{\hoffset}{0.00in}
\setlength{\marginparwidth}{0.00in}
\setlength{\marginparsep}{0.00in}
\setlength{\parindent}{0.00in}
\setlength{\parskip}{0.15in}

\usepackage{html}

% almost certainly you want these
% used for TeXing text within eps files

% there are many more packages, add them here as you need 
\usepackage{amsmath, amssymb, amsfonts, amsthm, amscd, latexsym, enumerate}
\usepackage{xypic, xspace}
\usepackage[mathscr]{eucal}
\usepackage[dvips]{graphicx}
\usepackage[curve]{xy}

% define commands here
\theoremstyle{plain}
\newtheorem{lemma}{Lemma}[section]
\newtheorem{proposition}{Proposition}[section]
\newtheorem{theorem}{Theorem}[section]
\newtheorem{corollary}{Corollary}[section]

\theoremstyle{definition}
\newtheorem{definition}{Definition}[section]
\newtheorem{example}{Example}[section]
%\theoremstyle{remark}
\newtheorem{remark}{Remark}[section]
\newtheorem*{notation}{Notation}
\newtheorem*{claim}{Claim}

\renewcommand{\thefootnote}{\ensuremath{\fnsymbol{footnote}}}
\numberwithin{equation}{section}

\newcommand{\Ad}{{\rm Ad}}
\newcommand{\Aut}{{\rm Aut}}
\newcommand{\Cl}{{\rm Cl}}
\newcommand{\Co}{{\rm Co}}
\newcommand{\DES}{{\rm DES}}
\newcommand{\Diff}{{\rm Diff}}
\newcommand{\Dom}{{\rm Dom}}
\newcommand{\Hol}{{\rm Hol}}
\newcommand{\Mon}{{\rm Mon}}
\newcommand{\Hom}{{\rm Hom}}
\newcommand{\Ker}{{\rm Ker}}
\newcommand{\Ind}{{\rm Ind}}
\newcommand{\IM}{{\rm Im}}
\newcommand{\Is}{{\rm Is}}
\newcommand{\ID}{{\rm id}}
\newcommand{\grpL}{{\rm GL}}
\newcommand{\Iso}{{\rm Iso}}
\newcommand{\rO}{{\rm O}}
\newcommand{\Sem}{{\rm Sem}}
\newcommand{\SL}{{\rm Sl}}
\newcommand{\St}{{\rm St}}
\newcommand{\Sym}{{\rm Sym}}
\newcommand{\Symb}{{\rm Symb}}
\newcommand{\SU}{{\rm SU}}
\newcommand{\Tor}{{\rm Tor}}
\newcommand{\U}{{\rm U}}

\newcommand{\A}{\mathcal A}
\newcommand{\Ce}{\mathcal C}
\newcommand{\D}{\mathcal D}
\newcommand{\E}{\mathcal E}
\newcommand{\F}{\mathcal F}
%\newcommand{\grp}{\mathcal G}
\renewcommand{\H}{\mathcal H}
\renewcommand{\cL}{\mathcal L}
\newcommand{\Q}{\mathcal Q}
\newcommand{\R}{\mathcal R}
\newcommand{\cS}{\mathcal S}
\newcommand{\cU}{\mathcal U}
\newcommand{\W}{\mathcal W}

\newcommand{\bA}{\mathbb{A}}
\newcommand{\bB}{\mathbb{B}}
\newcommand{\bC}{\mathbb{C}}
\newcommand{\bD}{\mathbb{D}}
\newcommand{\bE}{\mathbb{E}}
\newcommand{\bF}{\mathbb{F}}
\newcommand{\bG}{\mathbb{G}}
\newcommand{\bK}{\mathbb{K}}
\newcommand{\bM}{\mathbb{M}}
\newcommand{\bN}{\mathbb{N}}
\newcommand{\bO}{\mathbb{O}}
\newcommand{\bP}{\mathbb{P}}
\newcommand{\bR}{\mathbb{R}}
\newcommand{\bV}{\mathbb{V}}
\newcommand{\bZ}{\mathbb{Z}}

\newcommand{\bfE}{\mathbf{E}}
\newcommand{\bfX}{\mathbf{X}}
\newcommand{\bfY}{\mathbf{Y}}
\newcommand{\bfZ}{\mathbf{Z}}

\renewcommand{\O}{\Omega}
\renewcommand{\o}{\omega}
\newcommand{\vp}{\varphi}
\newcommand{\vep}{\varepsilon}

\newcommand{\diag}{{\rm diag}}
\newcommand{\grp}{{\mathsf{G}}}
\newcommand{\dgrp}{{\mathsf{D}}}
\newcommand{\desp}{{\mathsf{D}^{\rm{es}}}}
\newcommand{\grpeod}{{\rm Geod}}
%\newcommand{\grpeod}{{\rm geod}}
\newcommand{\hgr}{{\mathsf{H}}}
\newcommand{\mgr}{{\mathsf{M}}}
\newcommand{\ob}{{\rm Ob}}
\newcommand{\obg}{{\rm Ob(\mathsf{G)}}}
\newcommand{\obgp}{{\rm Ob(\mathsf{G}')}}
\newcommand{\obh}{{\rm Ob(\mathsf{H})}}
\newcommand{\Osmooth}{{\Omega^{\infty}(X,*)}}
\newcommand{\grphomotop}{{\rho_2^{\square}}}
\newcommand{\grpcalp}{{\mathsf{G}(\mathcal P)}}

\newcommand{\rf}{{R_{\mathcal F}}}
\newcommand{\grplob}{{\rm glob}}
\newcommand{\loc}{{\rm loc}}
\newcommand{\TOP}{{\rm TOP}}

\newcommand{\wti}{\widetilde}
\newcommand{\what}{\widehat}

\renewcommand{\a}{\alpha}
\newcommand{\be}{\beta}
\newcommand{\grpa}{\grpamma}
%\newcommand{\grpa}{\grpamma}
\newcommand{\de}{\delta}
\newcommand{\del}{\partial}
\newcommand{\ka}{\kappa}
\newcommand{\si}{\sigma}
\newcommand{\ta}{\tau}

\newcommand{\med}{\medbreak}
\newcommand{\medn}{\medbreak \noindent}
\newcommand{\bign}{\bigbreak \noindent}

\newcommand{\lra}{{\longrightarrow}}
\newcommand{\ra}{{\rightarrow}}
\newcommand{\rat}{{\rightarrowtail}}
\newcommand{\ovset}[1]{\overset {#1}{\ra}}
\newcommand{\ovsetl}[1]{\overset {#1}{\lra}}
\newcommand{\hr}{{\hookrightarrow}}

\newcommand{\<}{{\langle}}

%\newcommand{\>}{{\rangle}}



%\usepackage{geometry, amsmath,amssymb,latexsym,enumerate}
%\usepackage{xypic}

\def\baselinestretch{1.1}


\hyphenation{prod-ucts}

%\grpeometry{textwidth= 16 cm, textheight=21 cm}

\newcommand{\sqdiagram}[9]{$$ \diagram #1 \rto^{#2} \dto_{#4}&
#3 \dto^{#5} \\ #6 \rto_{#7} & #8 \enddiagram
\eqno{\mbox{#9}}$$ }

\def\C{C^{\ast}}

\newcommand{\labto}[1]{\stackrel{#1}{\longrightarrow}}

%\newenvironment{proof}{\noindent {\bf Proof} }{ \hfill $\Box$
%{\mbox{}}

\newcommand{\quadr}[4]
{\begin{pmatrix} & #1& \\[-1.1ex] #2 & & #3\\[-1.1ex]& #4&
\end{pmatrix}}
\def\D{\mathsf{D}}

\begin{document}

 A Dirac $\delta$ symbol can be interpreted as a linear functional, i.e. a linear mapping from a \htmladdnormallink{function}{http://planetphysics.us/encyclopedia/Bijective.html} space, consisting e.g. of certain real functions, to $\mathbb{R}$ (or $\mathbb{C}$), having the property
$$\delta[f] \;=\; f(0).$$
One may think this as the \htmladdnormallink{inner product}{http://planetphysics.us/encyclopedia/NormInducedByInnerProduct.html} $$\langle f,\,\delta\rangle \;=\; \int_0^\infty\!f(t)\delta(t)\,dt$$
of a function $f$ and another ``function'' $\delta$, when the well-known formula
$$\int_0^\infty\!f(t)\delta(t)\,dt \;=\; f(0)$$
is true.\, Applying this to\, $f(t) := e^{-st}$,\, one gets
$$\int_0^\infty\!e^{-st}\delta(t)\,dt \;=\; e^{-0},$$
i.e. the \htmladdnormallink{Laplace transform}{http://planetphysics.us/encyclopedia/2DLT.html} \begin{align}
\mathcal{L}\{\delta(t)\} \;=\; 1.
\end{align}
By the delay \htmladdnormallink{theorem}{http://planetphysics.us/encyclopedia/Formula.html}, this result may be generalised to
$$\mathcal{L}\{\delta(t\!-\!a))\} \;=\; e^{-as}.$$\\


When introducing a so-called ``Dirac delta function'', for example
\begin{align*}
\eta_\varepsilon(t) \;:=\;
\begin{cases}
\frac{1}{\varepsilon} \quad \mbox{for}\;\; 0 \le t \le \varepsilon,\\
0 \quad \mbox{for} \qquad t > \varepsilon,
\end{cases}
\end{align*}

as an ``approximation'' of Dirac delta, we obtain the Laplace transform
$$\mathcal{L}\{\eta_\varepsilon(t)\} \;=\; \int_0^\infty\!e^{-st}\eta_\varepsilon(t)\,dt
\;=\; \int_0^\varepsilon\frac{e^{-st}}{\varepsilon}\,dt+\int_\varepsilon^\infty\!e^{-st}\cdot0\,dt
\;=\; \frac{1}{\varepsilon}\int_0^\varepsilon\!e^{-st}\,dt \;=\; \frac{1\!-\!e^{-\varepsilon s}}{\varepsilon s}.$$
As the Taylor expansion shows, we then have
$$\lim_{\varepsilon\to0+}\mathcal{L}\{\eta_\varepsilon(t)\} \;=\; 1,$$
according to ref.(2).


\subsection{Laplace transform of Dirac delta}

The \emph{Dirac delta}, $\delta$, can be correctly defined as a linear functional, i.e. a linear mapping from a function space, consisting e.g. of certain real functions, to $\mathbb{R}$ (or $\mathbb{C}$), having the property
$$\delta[f] \;=\; f(0).$$
One may think of this as an inner product
$$\langle f,\,\delta\rangle \;=\; \int_0^\infty\!f(t)\delta(t)\,dt$$
of a function $f$ and another ``function'' $\delta$, when the well-known formula
$$\int_0^\infty\!f(t)\delta(t)\,dt \;=\; f(0)$$
holds.\, By applying this to \, $f(t) := e^{-st}$,\, one gets
$$\int_0^\infty\!e^{-st}\delta(t)\,dt \;=\; e^{-0},$$
i.e. the Laplace transform
\begin{align}
\mathcal{L}\{\delta(t)\} \;=\; 1.
\end{align}

By the delay theorem, this result may be generalised to:
$$\mathcal{L}\{\delta(t\!-\!a)\} \;=\; e^{-as}.$$

\begin{thebibliography}{9}
\bibitem{SL51}
Schwartz, L. (1950--1951), Th\'eorie des distributions, vols. 1--2, Hermann: Paris.
\bibitem{WR73}
W. Rudin, {\em Functional Analysis},
McGraw-Hill Book Company, 1973.
\bibitem{hormander}
L. H\"ormander, {\em The Analysis of Linear Partial Differential Operators I,
(Distribution theory and Fourier Analysis)}, 2nd ed, Springer-Verlag, 1990.
\end{thebibliography} 

\end{document}