Talk:PlanetPhysics/Category

From Wikiversity
Jump to navigation Jump to search

Original TeX Content from PlanetPhysics Archive[edit source]

%%% This file is part of PlanetPhysics snapshot of 2011-09-01
%%% Primary Title: category
%%% Primary Category Code: 00.
%%% Filename: Category.tex
%%% Version: 44
%%% Owner: bci1
%%% Author(s): bci1
%%% PlanetPhysics is released under the GNU Free Documentation License.
%%% You should have received a file called fdl.txt along with this file.        
%%% If not, please write to gnu@gnu.org.
\documentclass[12pt]{article}
\pagestyle{empty}
\setlength{\paperwidth}{8.5in}
\setlength{\paperheight}{11in}

\setlength{\topmargin}{0.00in}
\setlength{\headsep}{0.00in}
\setlength{\headheight}{0.00in}
\setlength{\evensidemargin}{0.00in}
\setlength{\oddsidemargin}{0.00in}
\setlength{\textwidth}{6.5in}
\setlength{\textheight}{9.00in}
\setlength{\voffset}{0.00in}
\setlength{\hoffset}{0.00in}
\setlength{\marginparwidth}{0.00in}
\setlength{\marginparsep}{0.00in}
\setlength{\parindent}{0.00in}
\setlength{\parskip}{0.15in}

\usepackage{html}

% this is the default PlanetPhysics preamble. as your 

\usepackage{amsmath, amssymb, amsfonts, amsthm, amscd, latexsym, enumerate}
\usepackage{xypic, xspace}
\usepackage[mathscr]{eucal}
\usepackage[dvips]{graphicx}
\usepackage[curve]{xy}
% define commands here
\theoremstyle{plain}
\newtheorem{lemma}{Lemma}[section]
\newtheorem{proposition}{Proposition}[section]
\newtheorem{theorem}{Theorem}[section]
\newtheorem{corollary}{Corollary}[section]
\theoremstyle{definition}
\newtheorem{definition}{Definition}[section]
\newtheorem{example}{Example}[section]
%\theoremstyle{remark}
\newtheorem{remark}{Remark}[section]
\newtheorem*{notation}{Notation}
\newtheorem*{claim}{Claim}
\renewcommand{\thefootnote}{\ensuremath{\fnsymbol{footnote}}}
\numberwithin{equation}{section}
\newcommand{\Ad}{{\rm Ad}}
\newcommand{\Aut}{{\rm Aut}}
\newcommand{\Cl}{{\rm Cl}}
\newcommand{\Co}{{\rm Co}}
\newcommand{\DES}{{\rm DES}}
\newcommand{\Diff}{{\rm Diff}}
\newcommand{\Dom}{{\rm Dom}}
\newcommand{\Hol}{{\rm Hol}}
\newcommand{\Mon}{{\rm Mon}}
\newcommand{\Hom}{{\rm Hom}}
\newcommand{\Ker}{{\rm Ker}}
\newcommand{\Ind}{{\rm Ind}}
\newcommand{\IM}{{\rm Im}}
\newcommand{\Is}{{\rm Is}}
\newcommand{\ID}{{\rm id}}
\newcommand{\grpL}{{\rm GL}}
\newcommand{\Iso}{{\rm Iso}}
\newcommand{\rO}{{\rm O}}
\newcommand{\Sem}{{\rm Sem}}
\newcommand{\SL}{{\rm Sl}}
\newcommand{\St}{{\rm St}}
\newcommand{\Sym}{{\rm Sym}}
\newcommand{\Symb}{{\rm Symb}}
\newcommand{\SU}{{\rm SU}}
\newcommand{\Tor}{{\rm Tor}}
\newcommand{\U}{{\rm U}}
\newcommand{\A}{\mathcal A}
\newcommand{\Ce}{\mathcal C}
\newcommand{\D}{\mathcal D}
\newcommand{\E}{\mathcal E}
\newcommand{\F}{\mathcal F}
%\newcommand{\grp}{\mathcal G}
\renewcommand{\H}{\mathcal H}
\renewcommand{\cL}{\mathcal L}
\newcommand{\Q}{\mathcal Q}
\newcommand{\R}{\mathcal R}
\newcommand{\cS}{\mathcal S}
\newcommand{\cU}{\mathcal U}
\newcommand{\W}{\mathcal W}

\newcommand{\bA}{\mathbb{A}}
\newcommand{\bB}{\mathbb{B}}
\newcommand{\bC}{\mathbb{C}}
\newcommand{\bD}{\mathbb{D}}
\newcommand{\bE}{\mathbb{E}}
\newcommand{\bF}{\mathbb{F}}
\newcommand{\bG}{\mathbb{G}}
\newcommand{\bK}{\mathbb{K}}
\newcommand{\bM}{\mathbb{M}}
\newcommand{\bN}{\mathbb{N}}
\newcommand{\bO}{\mathbb{O}}
\newcommand{\bP}{\mathbb{P}}
\newcommand{\bR}{\mathbb{R}}
\newcommand{\bV}{\mathbb{V}}
\newcommand{\bZ}{\mathbb{Z}}
\newcommand{\bfE}{\mathbf{E}}
\newcommand{\bfX}{\mathbf{X}}
\newcommand{\bfY}{\mathbf{Y}}
\newcommand{\bfZ}{\mathbf{Z}}
\renewcommand{\O}{\Omega}
\renewcommand{\o}{\omega}
\newcommand{\vp}{\varphi}
\newcommand{\vep}{\varepsilon}
\newcommand{\diag}{{\rm diag}}
\newcommand{\grp}{{\mathsf{G}}}
\newcommand{\dgrp}{{\mathsf{D}}}
\newcommand{\desp}{{\mathsf{D}^{\rm{es}}}}
\newcommand{\grpeod}{{\rm Geod}}
%\newcommand{\grpeod}{{\rm geod}}
\newcommand{\hgr}{{\mathsf{H}}}
\newcommand{\mgr}{{\mathsf{M}}}
\newcommand{\ob}{{\rm Ob}}
\newcommand{\obg}{{\rm Ob(\mathsf{G)}}}
\newcommand{\obgp}{{\rm Ob(\mathsf{G}')}}
\newcommand{\obh}{{\rm Ob(\mathsf{H})}}
\newcommand{\Osmooth}{{\Omega^{\infty}(X,*)}}
\newcommand{\grphomotop}{{\rho_2^{\square}}}
\newcommand{\grpcalp}{{\mathsf{G}(\mathcal P)}}
\newcommand{\rf}{{R_{\mathcal F}}}
\newcommand{\grplob}{{\rm glob}}
\newcommand{\loc}{{\rm loc}}
\newcommand{\TOP}{{\rm TOP}}
\newcommand{\wti}{\widetilde}
\newcommand{\what}{\widehat}
\renewcommand{\a}{\alpha}
\newcommand{\be}{\beta}
\newcommand{\grpa}{\grpamma}
%\newcommand{\grpa}{\grpamma}
\newcommand{\de}{\delta}
\newcommand{\del}{\partial}
\newcommand{\ka}{\kappa}
\newcommand{\si}{\sigma}
\newcommand{\ta}{\tau}
\newcommand{\lra}{{\longrightarrow}}
\newcommand{\ra}{{\rightarrow}}
\newcommand{\rat}{{\rightarrowtail}}
\newcommand{\ovset}[1]{\overset {#1}{\ra}}
\newcommand{\ovsetl}[1]{\overset {#1}{\lra}}
\newcommand{\hr}{{\hookrightarrow}}

\newcommand{\<}{{\langle}}

%\newcommand{\>}{{\rangle}}

%\usepackage{geometry, amsmath,amssymb,latexsym,enumerate}
%\usepackage{xypic}

\def\baselinestretch{1.1}


\hyphenation{prod-ucts}

%\grpeometry{textwidth= 16 cm, textheight=21 cm}

\newcommand{\sqdiagram}[9]{$$ \diagram #1 \rto^{#2} \dto_{#4}&
#3 \dto^{#5} \\ #6 \rto_{#7} & #8 \enddiagram
\eqno{\mbox{#9}}$$ }

\def\C{C^{\ast}}

\newcommand{\labto}[1]{\stackrel{#1}{\longrightarrow}}

%\newenvironment{proof}{\noindent {\bf Proof} }{ \hfill $\Box$
%{\mbox{}}

\newcommand{\quadr}[4]
{\begin{pmatrix} & #1& \\[-1.1ex] #2 & & #3\\[-1.1ex]& #4&
\end{pmatrix}}
\def\D{\mathsf{D}}

\begin{document}

 The \htmladdnormallink{concept}{http://planetphysics.us/encyclopedia/PreciseIdea.html} of category emerged in 1943-1945 from \htmladdnormallink{work}{http://planetphysics.us/encyclopedia/Work.html} in \htmladdnormallink{algebraic topology}{http://planetphysics.us/encyclopedia/CubicalHigherHomotopyGroupoid.html} and Homological Algebra by S. Eilenberg and S. Mac Lane \cite{Eilenberg-MacLane45}, as a generalization of the \htmladdnormallink{algebraic}{http://planetphysics.us/encyclopedia/CoIntersections.html} concepts of \htmladdnormallink{semigroup}{http://planetphysics.us/encyclopedia/TrivialGroupoid.html}, \htmladdnormallink{monoid}{http://planetphysics.us/encyclopedia/TrivialGroupoid.html}, \htmladdnormallink{group}{http://planetphysics.us/encyclopedia/TrivialGroupoid.html}, \htmladdnormallink{groupoid}{http://planetphysics.us/encyclopedia/GroupoidHomomorphism2.html}, etc., as well as an extension of \htmladdnormallink{topological}{http://planetphysics.us/encyclopedia/CoIntersections.html} concepts and \htmladdnormallink{diagrams}{http://planetphysics.us/encyclopedia/TrivialGroupoid.html} employed in algebraic topology and homological algebra. Thus many properties of mathematical \htmladdnormallink{systems}{http://planetphysics.us/encyclopedia/SimilarityAndAnalogousSystemsDynamicAdjointnessAndTopologicalEquivalence.html} can be unified by a presentation with \htmladdnormallink{diagrams}{http://planetphysics.us/encyclopedia/CommutativeSquareDiagram.html} of arrows that may represent \htmladdnormallink{functions}{http://planetphysics.us/encyclopedia/Bijective.html}, transformations, distributions, \htmladdnormallink{operators}{http://planetphysics.us/encyclopedia/QuantumOperatorAlgebra4.html}, etc., and that-- in the case of concrete categories-- may also include \htmladdnormallink{objects}{http://planetphysics.us/encyclopedia/TrivialGroupoid.html} such as class elements, sets, topological spaces, etc. ; the usefulness of such diagrams comes from the composition of the arrows and the (fundamental) axioms that define any category which allow mathematical constructions to be represented by universal properties of diagrams.

\subsection{Definitions}

To introduce the modern concept of category, according to S. MacLane
\cite{MacLane98} without using any set theory, one needs to introduce first the notions of {\em metagraph} and {\em metacategory}.


\begin{definition}
A concrete \emph{metagraph} $\mathcal{M}_G$ consists of objects, $A, B, C,$...
and arrows $f, g, h,$... between objects, and two operations as follows:

\begin{itemize}
\item a {\em \htmladdnormallink{domain}{http://planetphysics.us/encyclopedia/Bijective.html} operation}, $dom$, which assigns to each arrow $f$ an object $A~ =~dom ~f$
\item a {\em \htmladdnormallink{codomain}{http://planetphysics.us/encyclopedia/Bijective.html} operation}, $cod$, which assigns to each arrow $f$ an object $B~ = ~cod ~f,$
represented as $f: A \to B$ or $A \stackrel{f}{\longrightarrow} B$
\end{itemize}

\end{definition}

\begin{definition}
A \emph{metacategory} $\mathbb{C}$ is a metagraph with two additional operations:

\begin{itemize}
\item {\em Identity}, $id$ or {\bf 1}, which assigns to each object $A$ a unique arrow $id_A$, or $1_A$;
\item {\em Composition}, $\circ$, which assigns to each pair of arrows $<g,f>$
with $dom~ g = cod~ f$ a unique arrow $g \circ f$ called their \emph{composite},
such that $g \circ f : dom f \to cod g,$
\end{itemize}

that are subject to two axioms:
\begin{itemize}
\item {\em c1. (Unit law)}: for all arrows $f: A \to B$ and $g:B \to C$ the composition with the identity arrow $1_B$ results in

$ 1_B \circ f = f$ and $g \circ 1_B = g ;$

\item {\em c2. Associativity}: for given objects and arrows in the
\htmladdnormallink{(categorical) sequence}{http://planetphysics.us/encyclopedia/CategoricalSequence.html}:
$$A \stackrel{f}{\longrightarrow} B \stackrel{g}{\longrightarrow}   C \stackrel{h}{\longrightarrow}  D ,  $$ one always the equality

$$ h \circ(g \circ f) =  (h \circ g) \circ f , $$
whenever the composition $\circ$ is defined.

\end{itemize}
\end{definition}

\begin{definition}
A \emph{category} $\mathcal{C}$ is an interpretation of a metacategory
within set theory. Thus, a {\em category} is a {\em graph} -- defined by a
set $Ob \mathcal{C}:=\mathbb{O}$, a set of arrows* (called also \emph{\htmladdnormallink{morphisms}{http://planetphysics.us/encyclopedia/TrivialGroupoid.html}})
$Mor\mathcal{C}:= \mathbb{A}$, and two functions:

$$ dom: Mor \mathcal{C} \to Ob \mathcal{C}$$ and

$$cod: Mor\mathcal{C} \to Ob \mathcal{C},~$$ -- that also has two additional functions:
$$id: Ob \mathcal{C} \to Mor \mathcal{C}$$ defined by the assignments
$$\mathbb{A} \times_\mathbb{O} \mathbb{A} \longrightarrow \mathbb{A}$$ called
\emph{identity}, and a {\em composition} $c = ``\circ''$, that is,
$$ c \longmapsto id_c$$, defined by the assignments $(g,f) \longmapsto g \circ f$, such that:
$$ dom(id_A) = A = cod(id_A), dom(g \circ f) = domf, cod (g \circ f)= codg,$$
for all objects $A \in Ob \mathcal{C}$ and all composable pairs of arrows (morphisms) $(g,f) \in \mathbb{A} \times_\mathbb{O} \mathbb{A}, $ and also
such that the unit law and associativity axioms {\em c1} and {\em c2} hold.
\end{definition}

*Note that the set of all morphisms $Mor~ \mathcal{C}$ of a category $\mathcal{C}$ is sometimes denoted as $\mathcal{M}$, or in French publications as $Fl ~ \mathcal{C}$.

For convenience one also defines a $Hom$ (or $hom$) set as:
$$Hom(B,C) := [f|f \in \mathcal{C}, dom f= B, cod f = C],$$
which is also denoted as $[B,C]_\mathcal{C}$, or simply $[B,C].$

\subsection{Alternative definitions}
There are several alternative definitions of a category.
Thus, as defined by W.F. Lawvere, a {\em category} is an interpretation of the
\htmladdnormallink{ETAC axioms}{http://planetphysics.us/encyclopedia/Formula.html} from his \htmladdnormallink{elementary theory of abstract categories}{http://planetphysics.us/encyclopedia/Formula.html} \cite{Lawvere66}.
For small categories-- whose $Ob \mathcal{C}$ is a set and also $Mor\mathcal{C}$
is a set-- one has a \htmladdnormallink{\em direct definition.}{http://planetmath.org/encyclopedia/AlternativeDefinitionOfSmallCategory.html}

If, on the other hand, $Hom_\mathcal{C} (X,Y)$ is a class rather than a set then the category $\mathcal{C}$ is called {\em large}.


\begin{thebibliography}{99}

\bibitem{BAJ-DJ98a}
Baez, J. \& Dolan, J., 1998a, Higher-Dimensional Algebra III. n-Categories and the Algebra of Opetopes,
in: \emph{Advances in Mathematics}, 135, 145--206.

\bibitem{BAJ-DJ98B}
Baez, J. \& Dolan, J., 1998b, ``Categorification", Higher Category Theory, Contemporary Mathematics, 230, Providence: AMS, 1--36.

\bibitem{BAJ-DJ2k1}
Baez, J. \& Dolan, J., 2001, From Finite Sets to Feynman Diagrams,
in \emph{Mathematics Unlimited -- 2001 and Beyond}, Berlin: Springer, 29--50.

\bibitem{BAJ-DJ97}
Baez, J., 1997, An Introduction to n-Categories,
in \emph{Category Theory and Computer Science, Lecture Notes in Computer Science}, 1290, Berlin: Springer-Verlag, 1--33.

\bibitem{Baianu-Marinescu68}
Baianu, I. and M. Marinescu: 1968, Organismic Supercategories: Towards a Unitary Theory of Systems. \emph{Bulletin of Mathematical Biophysics} \textbf{30}, 148-159.

\bibitem{Baianu70}
Baianu, I.C.: 1970, Organismic Supercategories: II. On Multistable Systems. \emph{Bulletin of Mathematical Biophysics}, \textbf{32}: 539-561.

\bibitem{Baianu71a}
Baianu,I.C. : 1971a, Organismic Supercategories and Qualitative Dynamics of Systems. \emph{Ibid.}, \textbf{33} (3), 339--354.

\bibitem{Baianu71b}
I.C. Baianu: 1971b, Categories, Functors and Quantum Algebraic Computations, in P. Suppes (ed.), \emph{Proceed. Fourth Intl. Congress Logic-Mathematics-Philosophy of Science}, September 1--4, 1971, University of Bucharest.

\bibitem{ICB04b}
I.C. Baianu: \L ukasiewicz-Topos Models of Neural Networks, Cell Genome and Interactome Nonlinear Dynamics). CERN Preprint EXT-2004-059. \textit{Health Physics and Radiation Effects} (June 29, 2004).

\bibitem{ICBs5}
I.C. Baianu and D. Scripcariu: 1973, On Adjoint Dynamical Systems. \emph{The Bulletin of Mathematical Biophysics}, \textbf{35}(4), 475--486.

\bibitem{ICB5}
I.C. Baianu: 1973, Some Algebraic Properties of \emph{\textbf{(M,R)}} -- Systems. \emph{Bulletin of Mathematical Biophysics} \textbf{35}, 213-217.

\bibitem{ICBm2}
I.C. Baianu and M. Marinescu: 1974, A Functorial Construction of \emph{\textbf{(M,R)}}-- Systems. \emph{Revue Roumaine de Mathematiques Pures et Appliquees} \textbf{19}: 388-391.

\bibitem{ICB6}
I.C. Baianu: 1977, A Logical Model of Genetic Activities in \L ukasiewicz Algebras: The Non-linear Theory. \emph{Bulletin of Mathematical Biophysics}, \textbf{39}: 249-258.

\bibitem{ICB7}
I.C. Baianu: 1980, Natural Transformations of Organismic Structures. \emph{Bulletin of Mathematical Biophysics} \textbf{42}: 431-446.

\bibitem{Baianu87}
Baianu, I.C.: 1987. {\em Mathematical Models in Medicine}, vol. 7., Ch.11 Pergamon Press, New York, 1513 -1577;
URLs: {\em CERN Preprint No. EXT-2004-072:},
\htmladdnormallink{available here as PDF}{http://doc.cern.ch//archive/electronic/other/ext/ext-2004-072.pdf}, or
\htmladdnormallink{as as an archived html document}{http://en.scientificcommons.org/1857371}.

\bibitem{Bgg2}
Baianu, I. C., Glazebrook, J. F. and G. Georgescu: 2004, Categories of Quantum Automata and N-Valued \L ukasiewicz Algebras in Relation to Dynamic Bionetworks, \textbf{(M,R)}--Systems and Their Higher Dimensional Algebra,
\htmladdnormallink{PDF's of Abstract and Preprint of Report}{\\http://www.ag.uiuc.edu/fs401/QAuto.pdf}.

\bibitem{BBGG1}
Baianu, I.C. Brown R., J. F. Glazebrook, and Georgescu G.: 2006, Complex Nonlinear Biodynamics in Categories, Higher Dimensional Algebra and \L ukasiewicz--Moisil Topos: Transformations of Neuronal, Genetic and Neoplastic networks, \emph{Axiomathes} \textbf{16} Nos. 1--2, 65--122.

\bibitem{Bggb4}
Baianu, I.C., R. Brown and J. F. Glazebrook: 2007b, A Non-Abelian, Categorical Ontology of Spacetimes and Quantum Gravity, Axiomathes, 17: 169-225.

\bibitem{EML1}
Eilenberg, S. and S. Mac Lane.: 1942, Natural Isomorphisms in Group Theory., \emph{American Mathematical Society 43}: 757-831.

\bibitem{EL}
Eilenberg, S. and S. Mac Lane: 1945, The General Theory of Natural Equivalences, \emph{Transactions of the American Mathematical Society} \textbf{58}: 231-294.

\bibitem{ES-CH56}
Eilenberg, S. \& Cartan, H., 1956, Homological Algebra, Princeton: Princeton University Press.

\bibitem{ALEXsem}
Grothendieck, A. et al., S\'eminaire de G\'eom\'etrie Alg\'ebrique, Vol. 1--7, Berlin: Springer-Verlag.

\bibitem{ALEX57}
Grothendieck, A., 1957, "Sur Quelques Points d'alg\`ebre homologique", Tohoku Mathematics Journal, 9, 119--221.

\bibitem{LFW64}
Lawvere, F. W., 1964, "An Elementary Theory of the Category of Sets", Proceedings of the National Academy of Sciences U.S.A., 52, 1506--1511.

\bibitem{LFW65}
Lawvere, F. W., 1965, "Algebraic Theories, Algebraic Categories, and Algebraic Functors", Theory of Models, Amsterdam: North Holland, 413--418.

\bibitem{Lawvere66}
Lawvere, F. W., 1966, "The Category of Categories as a Foundation for Mathematics", Proceedings of the Conference on Categorical Algebra, La Jolla, New York: Springer-Verlag, 1--21.

\bibitem{MacLane98}
MacLane, S., 1997, Categories for the Working Mathematician, 2nd edition, New York: Springer-Verlag.

\bibitem{EML1}
Eilenberg, S. and S. Mac Lane.: 1942, Natural Isomorphisms in Group Theory., \emph{American Mathematical Society 43}: 757-831.

\bibitem{Eilenberg-MacLane45}
Eilenberg, S. and S. Mac Lane: 1945, The General Theory of Natural Equivalences, \emph{Transactions of the American Mathematical Society} \textbf{58}: 231-294.

\bibitem{BBGG2k6}
Baianu I. C., Brown R., Georgescu G. and J. F. Glazebrook: 2006b, Complex Nonlinear Biodynamics in Categories, Higher Dimensional Algebra and \L ukasiewicz--Moisil Topos: Transformations of Neuronal, Genetic and Neoplastic Networks., {\em Axiomathes}, \textbf{16} Nos. 1--2: 65--122.

\bibitem{Rosen58a}
Rosen, R.: 1958a, A Relational Theory of Biological Systems., {\em Bulletin of Mathematical Biophysics} \textbf{20}: 245-260.

\bibitem{Rosen58b}
Rosen, R.: 1958b, The Representation of Biological Systems from the Standpoint of the Theory of Categories., {\em Bulletin of Mathematical Biophysics} \textbf{20}: 317-341.


\bibitem{Other}
See also a more extensive \htmladdnormallink{category theory bibliography}{http://planetphysics.us/encyclopedia/BibliographyForCategoryTheoryAndAlgebraicTopologyApplicationsInTheoreticalPhysics.html}


\end{thebibliography} 

\end{document}