Matrix/Eigenvalues/0510/Q and R/Example

From Wikiversity
Jump to navigation Jump to search

We consider the linear mapping

given by the matrix

The question whether this mapping has eigenvalues, leads to the question whether there exists some , such that the equation

has a nontrivial solution . For a given , this is a linear problem and can be solved with the elimination algorithm. However, the question whether there exist eigenvalues at all, leads, due to the variable "eigenvalue parameter“ , to a nonlinear problem. The system of equations above is

For , we get , but the nullvector is not an eigenvector. Hence, suppose that . Both equations combined yield the condition

hence . But in , the number does not have a square root, therefore there is no solution, and that means that has no eigenvalues and no eigenvectors.

Now we consider the matrix as a real matrix, and look at the corresponding mapping

The same computations as above lead to the condition , and within the real numbers, we have the two solutions

For both values, we have now to find the eigenvectors. First, we consider the case , which yields the linear system

We write this as

and as

This system can be solved easily, the solution space has dimension one, and

is a basic solution.

For , we do the same steps, and the vector

is a basic solution. Thus over , the numbers and are eigenvalues, and the corresponding eigenspaces are