Rindler coordinates(1) are coordinates appropriate for an observer undergoing constant proper acceleration (a constant g-force felt) in an otherwise flat spacetime. Given an unprimed inertial frame set of coordinates, one assigns the accelerated frame observer primed coordinates, "Rindler coordinates", given by
where is the constant proper acceleration.
First Rindler solved the equation of motion for a constant proper acceleration problem.
If we go to an inertial frame for which a test mass is instantaneously at rest, the four-vector of acceleration will relate to the coordinate acceleration by
, but the length of the four-acceleration is an invariant we're calling the proper acceleration , so the inertial frame of instantaneous rest coordinate acceleration relates to the proper acceleration by
The coordinate acceleration according to the inertial frame of instantaneous rest relates to the ordinary force by Newton's second law so we have
The x component of the ordinary force for a particle of velocity with respect to the unprimed frame transforms between the two according to
And we are considering force along the direction of motion only so
So our equation for proper acceleration becomes
which means that the equation of motion for the case of constant proper acceleration is given by a constant ordinary force constant mass problem given according to whatever inertial frame we use. So we need to solve the equation of motion for a constant ordinary force, constant mass problem.
Integrating and choosing initial conditions so that its initially at zero velocity yields
Using
one can then solve for the time as a function of the proper time
and using
one can solve for the position as a function of time
and then the position as a function of proper time
Having both the position and time now as a function of proper time
We merely make a natural choice of primed coordinates for which is described by those equations of motion. Rindler's choice was
which does just that.
Rindler's spacetime is then just an accelerated frame transformation of the Minkowski metric of special relativity.
Doing the transformation
transforms the Minkowski line element
into
The Lorentz transformation can be written
If we let and be functions of the primed time, we can do a transformation given by (2)
where we are doing anti-derivatives with respect to the primed coordinate time.
It turns out that Rindler's choice of coordinates for an observer undergoing constant proper acceleration is the special case of this transformation where and are what you would get as a function of the primed time if they were describing constant proper acceleration. Doing this more general transformation for arbitrary time dependent acceleration the line element transforms to
so for arbitrarily time dependent acceleration, with these transformations you still get the Rindler spacetime, only is now any function of instead of a constant.
Further, it turns out that for , , and being any three arbitrary functions of that the line element given by
Is a zero Riemann tensor exact vacuum solution and so represents a more general accelerated frame transformation of the Minkowski metric of special relativity.
The path of constant proper acceleration as observed by an inertial frame
The red curve of the image shows the path of something undergoing constant proper acceleration with respect to the unprimed inertial frame coordinates which we found was given by
Note it asymptotically approaches the line
The path of a light speed signal lays at 45 degrees. Therefore information from any event in the shaded region will never intersect the path of the accelerated observer so long as he maintains his constant proper acceleration. As such that asymptote constitutes an event horizon from the perspective of the accelerated observer beyond which he can not be reached by any information there. So let's find out where in the accelerated observer's coordinates this asymptote is. Refer to the transformation to Rindler coordinates
First lets move the constant on the second
Next lets replace the from the equation for the asymptote.
Then square both sides
Now subtract the top equation from the bottom equation
Hyperbolic trig identity
Now the solution to this is
So we see that the event horizon for the accelerated observer is observed by him as a constant distance coordinate behind him.
This time-time element of the contravariant metric tensor in his coordinates is
Note that the event horizon corresponds to a singularity in this element of the metric tensor for his coordinates.
In comparing the physics an observer of constant proper acceleration observes to that a remote observer from an uncharged nonrotating black hole using Schwarzschild coordinates observes, it is best to choose the remote behavior of the accelerated observer's spatial coordinate scaled by the transformation
With this choice of distance coordinate for the accelerated observer, the line element becomes
which is now comperable to the Schwarzschild metric in Schwarzschild coordinates expressed by
(1) Rindler, W., 1969, Essential Relativity: Special, General, and Cosmological, Van Nostrand, New York
(2) Relativity equation 3.3.8