Quantum mechanics/Quantum field theory on a violin string

From Wikiversity
Jump to navigation Jump to search

This construction of an elementary quantum field theory will also give readers a glimpse of Fourier series expansions, Hamiltonian mechanics, and also Black-body radiation. It assumes that the reader is familiar with the solution to Schrödinger equation for a quantum harmonic oscillator.

The classical theory of transverse waves on a string[edit | edit source]

The first six modes (n= 1, 2,...,6) of a taut string clamped at both ends.

We begin with the classical theory of transverse waves on a vibrating string with length, , mass , and tension, . The dispersion relation, ω=ω(k), relates frequency to wavelength:

,

where is the angular frequency and is the wavenumber. The boundary conditions at each of the string of length imply that the wavenumber can take on only those values that cause the length to equal integral number of half wavelengths: , where may be taken to be a positive integer (1,2,3...). Thus we have:

.

The speed of transverse waves is,

,

where is the linear mass density.

Fourier series and wave energy[edit | edit source]

In our classical wave, the transverse displacement obeys,

While it is not customary to include the factor in this Fourier series, the insertion of this factor redefines the coefficients in a way that will prove convenient for establishing that this system is equivalent to an infinite collection of simple harmonic oscillators.

The quantum mechanical version of a classical theory begins with some canonical version of the theory. We shall adopt the convention than denotes .The total kinetic energy of the wave is,

The double sum contains terms when the two indices (m,n) are equal and terms where they are not equal.

The integrals over the product of the two sine waves have simple properties because the interval of length L contains exactly an integral number of half-wavelengths (i.e., n and m are both integers). Therefore,

Comment on inner product, orthogonal functions, and these integrals

This result is easy to remember if one notes that the average of a sinusoidal over n half wavelengths equals 1/2 if n is an integer, and that the integral of a constant over a segment equals the length of that segment:

This is one of many examples in physics where a class of functions (here sine functions) obeys this orthogonality condition:

If this identity holds, and are said to be w:orthogonal functions because is known as the inner product of the functions and (if and are real).[1] Whenever such a collection of orthogonal functions is defined, the range of the integral must be specified (here it is from to .)

With this substitution we have for the kinetic energy of a vibrating string:

If the factor of had not been inserted earlier, we would have redefined our amplitude so that the wave's kinetic energy would take this intuitive form.

Potential energy in a wave[edit | edit source]

The work required to stretch a string of length to a length of is , where is the tension in the string. This work acts as a potential energy. A transverse wave with displacement has a length given by,

where we have used the approximation for small ε: (1+ε)p≈1+pε.

If y=y(x,t) represents a wave, it is customary to replace the derivative by a partial derivative:dy/dx → ∂y/∂x. Moreover, it is convenient to express the partial derivative in terms of the wavenumber described above.

where we note that is the wavenumber of the n-th mode. Using the Fourier series expansion described above we have, the potential energy of the wave is

As occurred previously with the kinetic energy this double sum becomes a single sum over all cases where m = n because the cosine functions are also orthogonal functions over this range of integration (provided n and m are integers). As before the integral because the average value of cos2 is 1/2 whenever the cosine is averaged over an integral number of half-wavelengths.

where the spring constant associated with the nth mode is

It is known for the classical wave equation for a stretched string that each mode oscillates as

where

,

and is the frequency of the lowest order standing wave in the classical vibrating string).

Quantizing the harmonic oscillators[edit | edit source]

From the known behavior of the classical violin string, we obtain equations of motion, which if cast in canonical form, will tell us how to create the quantum mechanical version of the theory. Our canonical form shall be that of Hamiltonian mechanics. Our goal is to show that the classical vibrating string is identical to an (almost?) infinite number of independent simple harmonic oscillators.

,

where is the conjugate momentum. The wave equation for the simple harmonic oscillator is well known. The variables play the same role as in the quantum mechanics of a single particle. Schrödinger's equation is:

The solution is of the form,, where

and

and

is the energy eigenstate for the in the energy level of potential associated with a spring constant equal to .

If you really need to see these wavefunctions, here they are:

The energy eigenstates are:[2]

The Hermite polynomials are,

.
Click to expand a graph of the first six (physicists') Hermite polynomials Hn(x).

From Wikipedia, the first eleven physicists' Hermite polynomials are:

Links[edit | edit source]

Wikipedia[edit | edit source]
This is one of four Wikiversity resources on divergent series[edit | edit source]
External[edit | edit source]

http://www.tcm.phy.cam.ac.uk/~bds10/aqp/lec16-17_compressed.pdf

Footnotes[edit | edit source]

  1. If the functions are complex, take the complex conjugate of the second function; this ensures that <f|f> is a positive real number.
  2. https://en.wikipedia.org/w/index.php?title=Quantum_harmonic_oscillator&oldid=627959280