Given:
A homogeneous stress field with components in the basis
given by
![{\displaystyle \left[{\boldsymbol {\sigma }}\right]={\begin{bmatrix}3&1&1\\1&0&2\\1&2&0\end{bmatrix}}{\text{(MPa)}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/e2d0a4455887ad2026fb7d4b952381e195c93ac7)
Find:
- The traction (
) acting on a surface with unit normal
.
- The normal traction (
) acting on a surface with unit normal
.
- The projected shear traction (
) acting on a surface with unit normal
.
- The principal stresses.
- The principal directions of stress.
Here's how you can solve this problem using Maple.
with(linalg):
sigma := linalg[matrix](3,3,[3,1,1,1,0,2,1,2,0]);

e2 := linalg[matrix](3,1,[0,1,0]);

e3 := linalg[matrix](3,1,[0,0,1]);

n := evalm((e2+e3)/sqrt(2));
![{\displaystyle n:={\begin{bmatrix}0\\{\frac {\sqrt {2}}{2}}\\[2ex]{\frac {\sqrt {2}}{2}}\end{bmatrix}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/1bdb7c0ebdbd9e1522df84b363825a23e9964f80)
sigmaT := transpose(sigma);

t := evalm(sigmaT&*n);

tT := transpose(t);

N := evalm(tT&*n);

tdott := evalm(tT&*t);

S := sqrt(tdott[1,1] - N[1,1]^2);

sigPrin := eigenvals(sigma);

dirPrin := eigenvects(sigma);
![{\displaystyle {\mathit {dirPrin}}:=[1,\,1,\,\{[-1,\,1,\,1]\}],\,[-2,\,1,\,\{[0,\,-1,\,1]\}],\,[4,\,1,\,\{[2,\,1,\,1]\}]}](https://wikimedia.org/api/rest_v1/media/math/render/svg/6afd1c728e862ac4940ccec49907c09c7648ca73)
dirPrin[1];
![{\displaystyle [1,\,1,\,\{[-1,\,1,\,1]\}]~~~~{\text{Solution for Part 5}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/63b61aabf84daa98088731227649039c24b03f9e)
dirPrin[2];
![{\displaystyle [-2,\,1,\,\{[0,\,-1,\,1]\}]~~~~{\text{Solution for Part 5}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/ce446beee5074b46867f469f3e910a12932863b2)
dirPrin[3];
![{\displaystyle [4,\,1,\,\{[2,\,1,\,1]\}]~~~~{\text{Solution for Part 5}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/1313c307c5105997b53bd6f3b25b6f7900d353c4)