User:EGM6341.s11.TEAM1.WILKS/Mtg41: Difference between revisions

From Wikiversity
Jump to navigation Jump to search
Content deleted Content added
mNo edit summary
mNo edit summary
Line 4: Line 4:


===<p style="text-align:left;">'''[[media: 2010_11_30_14_54_10.djvu | Page 41-1]]'''</p>===
===<p style="text-align:left;">'''[[media: 2010_11_30_14_54_10.djvu | Page 41-1]]'''</p>===
Note: Generating functions

<br>

<br>

[[media: 2010_11_23_15_05_23.djvu | Eq.(5)p.40-3]] : General function for <math> \left \{ P_n \right \} \Rightarrow \ (1-2 \mu\ \rho\ + \rho^2 )^{-\frac{1}{2}} \ </math>
<br>
<br>
[[media: 2010_11_23_15_05_23.djvu | Eq.(6)p.40-4]] : General function for "r choose k" <math> {r \choose k} \Rightarrow \ (1+x)^r \ </math>
<br>
<br>
Note: Inverse square law, [[media: 2010_11_23_15_05_23.djvu | pg.40-1]]
<br>
<br>
Newton’s law is a claim—that could have been wrong—about the actual relation between the force '''F''' on a particle with mass m and its acceleration '''a'''. One tests it by calculating the acceleration with a presumed force and comparing it to the measured value. The
test will fail if either Newton’s law or the presumed force is wrong. Could '''F =ma'''
be tested more generally, without recourse to positing forces and looking at
actual solutions? It seems not. [http://search.yahoo.com/r/_ylt=A0oG7nEiiBJOHlIA8WFXNyoA;_ylu=X3oDMTE1aWl0aXFoBHNlYwNzcgRwb3MDMQRjb2xvA2FjMgR2dGlkA01TWTAxMV8xNzQ-/SIG=13u3cq2pa/EXP=1309858946/**http%3a//particle-theory.physics.lsa.umich.edu/kane/String%2520theory%2520and%2520the%2520real%2520world.pdf| Kane, String Theory, Physics Today, November 2010]
<br>
<br>
[[File:1bcspring.jpg|500px]]
<br>
<br>
Where <math> F=kr \ </math> and <math> d(t)=r \ </math>
<br>
<br>
[[File:Ssc2008-19a.jpg|500px]]
<br>
<br>
Where <math> \underline{f} = \frac{-GMm \underline{ \hat r \ } }{r^2} \ </math>
===<p style="text-align:left;">'''[[media: 2010_11_30_14_54_10.djvu | Page 41-2]]'''</p>===
===<p style="text-align:left;">'''[[media: 2010_11_30_14_54_10.djvu | Page 41-2]]'''</p>===
2 recurrence relationships:

<br>

<br>

{| style="width:100%" border="0"

|-
|<math>\displaystyle
\begin{align}
\mu\ P_n'-P_{n-1}'=nP_n
\end{align}
</math>
|| <p style="text-align:right;"> <font size=4> <font color="#FF0000"> (RR1) </font>
|-
|}
Note: not useful to generate <math> P_n \ </math> from previously known <math> P_k, k=0,1,...,n-1 \ </math> but useful to obtain Legendre differential equation together with recurrence relationship 2.
<br>
<br>
{| style="width:100%" border="0"
|-
|<math>\displaystyle
\begin{align}
(n+1)P_{n+1}-(2n+1) \mu\ P_n+nP_{n-1}'=0
\end{align}
</math>
|| <p style="text-align:right;"> <font size=4> <font color="#FF0000"> (RR2) </font>
|-
|}
Note: RR2 useful to generate <math> \left \{ P_n \right \} \ </math> knowing <math> P_0(x)=1, P_1(x)=x \ </math>
<br>
<br>
HW7.9: Generate <math> \left \{ P_2,...,P_6 \right \} \ </math> using RR2 starting from <math> P_0,P_1 \ </math> [[media: 2010_11_09_15_00_14.djvu | cf Eq.(4) - Eq.(6) p.36-2]]
<br>
<br>
Derive RR1: <math> A( \mu\ , \rho\ ):=1-2 \mu\ \rho\ + \rho^2 \ </math>
<br>
<br>
Where <math> -x=-2 \mu\ \rho\ + \rho^2 \ </math>
<br>
<br>
Then from [[media: 2010_11_23_15_05_23.djvu | Eq.(6) and Eq.(7) p.40-3]]: <math> \frac{1}{\sqrt{A( \mu\ , \rho\ ) }}=\alpha_0 + \alpha_1 (2 \mu\ \rho\ - \rho^2 ) + \alpha_2 (2 \mu\ \rho\ - \rho^2)^2 + ... \ </math>
<br>
<br>
Where <math> (2 \mu\ \rho\ - \rho^2)^2 = 4 \mu^2 \rho^2 - 4 \mu\ \rho^3 + \rho^4 \ </math>
===<p style="text-align:left;">'''[[media: 2010_11_30_14_54_10.djvu | Page 41-3]]'''</p>===
===<p style="text-align:left;">'''[[media: 2010_11_30_14_54_10.djvu | Page 41-3]]'''</p>===



Revision as of 04:24, 5 July 2011

EGM6321 - Principles of Engineering Analysis 1, Fall 2010


Mtg 41: Tue, 30Nov10

Note: Generating functions

Eq.(5)p.40-3 : General function for

Eq.(6)p.40-4 : General function for "r choose k"

Note: Inverse square law, pg.40-1

Newton’s law is a claim—that could have been wrong—about the actual relation between the force F on a particle with mass m and its acceleration a. One tests it by calculating the acceleration with a presumed force and comparing it to the measured value. The test will fail if either Newton’s law or the presumed force is wrong. Could F =ma be tested more generally, without recourse to positing forces and looking at actual solutions? It seems not. Kane, String Theory, Physics Today, November 2010



Where and

File:Ssc2008-19a.jpg

Where

2 recurrence relationships:

(RR1)

Note: not useful to generate from previously known but useful to obtain Legendre differential equation together with recurrence relationship 2.

(RR2)

Note: RR2 useful to generate knowing

HW7.9: Generate using RR2 starting from cf Eq.(4) - Eq.(6) p.36-2

Derive RR1:

Where

Then from Eq.(6) and Eq.(7) p.40-3:

Where

References